This application addresses PA-11-260 Research Project Grant (Parent R01). Chronic neutrophilic leukemia (CNL) and atypical (BCR-ABL1-negative) chronic myeloid leukemia (aCML) are both hematologic malignancies that have historically been diagnosed based on neoplastic expansion of granulocytic cells and exclusion of genetic drivers known to occur in other myeloproliferative neoplasms (MPN). The absence of defining genetic lesions has made diagnosis of these diseases challenging, and resulted in a dearth of effective therapeutic options for patients. I have recently identified gain-of-function CSF3R mutations in neoplastic cells from ~60% of CNL and aCML patients(1). These CSF3R mutations induce activation of downstream kinase signaling pathways resulting in hypersensitivity of CSF3R-mutant cells to FDA-approved small-molecule kinase inhibitors. Several patients harboring CSF3R mutations have been treated with these kinase inhibitors as single-agents and have exhibited dramatic and durable clinical responses. These findings lead to a number of important new questions and project directions. My long-term goal is to establish CSF3R targeted therapies as a pillar of effective long-term disease management for CNL/aCML patients. My immediate goals are to comprehensively understand the molecular mechanisms by which CSF3R drives leukemogenesis, to define the combinatorial therapeutic regimens that can control CSF3R- driven disease, and to identify alternative drivers in cases without CSF3R mutation. Based on the central hypothesis that CSF3R and related pathways are onco-requisite for the pathogenesis of CNL and aCML, I predict that targeting these pathways will revolutionize clinical care and outcomes for CNL/aCML patients. To accomplish these goals, several specific questions will be addressed: 1) What are the molecular mechanisms by which CSF3R mutation leads to receptor activation? CSF3R mutations fall into two categories based on spatial location within the protein, and preliminary data indicate these two classes of CSF3R mutations exhibit distinct mechanisms of activation and drug sensitivity patterns. It will be important to fully elucidate the molecular mechanisms underlying these phenotypes. 2) What are the consequences of combinatorial mutations involving CSF3R? My recently published data indicate that a substantial proportion of CSF3R mutant cases also harbor secondary mutations within the same allele of CSF3R or within secondary genes such as SETBP1. I will examine the effects on signaling and drug sensitivity of these combinatorial mutations in the context of single-agent and combination therapeutic regimens, both in vitro and in vivo. 3) What are the genetic drivers in CNL/aCML cases without CSF3R mutation? I have performed deep sequencing on CNL/aCML cases without CSF3R mutation, and have identified candidate mutations within the CSF3R pathway or related pathways in each case. I will validate the transformative capacity and drug sensitivity of each of these candidate driver oncogenes. Cumulatively, I expect these innovative analyses to have a major impact on our understanding of CNL/aCML biology and successful clinical management of these diseases.

Public Health Relevance

I have recently identified gain-of-function mutations in CSF3R as a defining molecular feature of chronic neutrophilic leukemia and atypical (BCR-ABL1-negative) chronic myeloid leukemia(1). These mutations result in dysregulation of downstream kinase pathways and hypersensitivity to small-molecule kinase inhibitors, and introduction of these mutations into a bone marrow transplant mouse model leads to a rapid myeloproliferative disease. Fully effective deployment of these findings into a clinical setting wil require addressing several remaining questions, including the mechanisms underlying mutant CSF3R activation, the influence on transformation/drug sensitivity of combinatorial mutations in vitro and in vivo, and identification of driver mutations in patients lacking CSF3R mutations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA183974-03
Application #
8997484
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Mufson, R Allan
Project Start
2014-04-01
Project End
2019-02-28
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Jenkins, Chelsea; Luty, Samuel B; Maxson, Julia E et al. (2018) Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Sci Signal 11:
Klug, Lillian R; Bannon, Amber E; Javidi-Sharifi, Nathalie et al. (2018) LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene :
Tyner, Jeffrey W; Tognon, Cristina E; Bottomly, Daniel et al. (2018) Functional genomic landscape of acute myeloid leukaemia. Nature 562:526-531
Maxson, Julia E; Tyner, Jeffrey W (2017) Genomics of chronic neutrophilic leukemia. Blood 129:715-722
Zhang, Haijiao; Means, Sophie; Schultz, Anna Reister et al. (2017) Unpaired Extracellular Cysteine Mutations of CSF3R Mediate Gain or Loss of Function. Cancer Res 77:4258-4267
Khanna, V; Eide, C A; Tognon, C E et al. (2017) Recurrent cyclin D2 mutations in myeloid neoplasms. Leukemia 31:2005-2008
Zhang, H; Reister Schultz, A; Luty, S et al. (2017) Characterization of the leukemogenic potential of distal cytoplasmic CSF3R truncation and missense mutations. Leukemia 31:2752-2760
DeRyckere, Deborah; Lee-Sherick, Alisa B; Huey, Madeline G et al. (2017) UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models. Clin Cancer Res 23:1481-1492
Jacob, Thomas; Agarwal, Anupriya; Ramunno-Johnson, Damien et al. (2016) Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting. Sci Rep 6:28163
Stevens, Brett; Maxson, Julia; Tyner, Jeffrey et al. (2016) Clonality of neutrophilia associated with plasma cell neoplasms: report of a SETBP1 mutation and analysis of a single institution series. Leuk Lymphoma 57:927-34

Showing the most recent 10 out of 23 publications