Cellular resistance is one of the major causes of therapeutic failure for solid tumors, thus highlighting the need to identify novel factors driving aggressive phenotypes. Overexpression of metadherin (MTDH, also known as AEG-1 and LYRIC) has been documented in numerous solid tumors to date and correlates with poor prognosis. Moreover, MTDH overexpression has been implicated in metastasis and resistance to therapy, two important hallmarks of an aggressive cancer. We recently made the important discovery that MTDH acts as an RNA binding protein to alter translation of multiple mRNAs, thus identifying a potential role for MTDH in post- translational gene expression. These mRNAs include several DNA repair proteins in the Fanconi anemia (FA) pathway. Our objective in this application is to determine the role of MTDH regulation of DNA repair in resistance to therapy. The rationale for this project is that because MTDH is highly expressed in multiple cancer types and contributes to the emergence of a resistant phenotype, mechanistic insights into how MTDH functions will offer a strong scientific framework whereby MTDH pathway targeted therapies can be developed. To test our central hypothesis, we propose three specific aims:
In Aim 1, we will identify mechanisms by which MTDH association with specific mRNAs alters the DNA damage response pathway. Using MTDH-deficient cancer cell lines and MTDH-/- mouse embryonic fibroblasts, we will study the role of MTDH in mRNA metabolism and control of translation of Rad18, FANCI, FANCD2 and other DNA repair proteins. We will extend studies to determine if MTDH knockdown or disruption the MTDH:mRNA complex by mRNA mimetics are sufficient to perturb MTDH translational regulation of FA pathway genes.
In Aim 2, we will overcome resistance to cisplatin by targeting MTDH and the DNA repair pathway. We will evaluate whether targeting MTDH and the FA DNA repair pathway can increase the therapeutic efficacy of cisplatin via disruption of the cellular response to DNA damage.
In Aim 3, we will determine the effect of MTDH expression and FA pathway activation on resistance to ICL-inducing agents in cancer. Studies will include 1) xenograft experiments using well-characterized human endometrial tumors from our viable tumor bank; and 2) immunohistochemical analysis of the MTDH and FA pathway in FFPE tumor tissues from 86 advanced endometrial cancer patients treated with ICL-inducing agents. Upon the successful completion of the proposed research, it is our expectation that we will understand the pathological function of MTDH through its regulation of mRNA stability and translation of FA pathway proteins. These results are expected to have an important positive impact because they will provide a strong mechanistic basis for the correlation of MTDH overexpression with therapeutic resistance and serve as a foundation for the future development of MTDH-targeted therapies.

Public Health Relevance

MTDH is an oncogene involved in both metastasis and drug resistance, the most deadly aspects of cancer and drivers of therapeutic failure. Improvements in cancer treatment rely on advances in the molecular understanding of drug resistance, including how cells can repair damaged DNA after treatment with chemotherapy. By providing novel insights into the role of MTDH in the enhancement of DNA repair, we will facilitate the translation of basic biomedical research into clinical therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA184101-05
Application #
9550920
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Arya, Suresh
Project Start
2014-09-18
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Iowa
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Devor, Eric J; Cha, Elizabeth; Warrier, Akshaya et al. (2018) The miR-503 cluster is coordinately under-expressed in endometrial endometrioid adenocarcinoma and targets many oncogenes, cell cycle genes, DNA repair genes and chemotherapy response genes. Onco Targets Ther 11:7205-7211
Ebeid, Kareem; Meng, Xiangbing; Thiel, Kristina W et al. (2018) Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol 13:72-81
Devor, Eric J; Miecznikowski, Jeffrey; Schickling, Brandon M et al. (2017) Dysregulation of miR-181c expression influences recurrence of endometrial endometrioid adenocarcinoma by modulating NOTCH2 expression: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 147:648-653
Devor, Eric J; Reyes, Henry D; Gonzalez-Bosquet, Jesus et al. (2017) Placenta-Specific Protein 1 Expression in Human Papillomavirus 16/18-Positive Cervical Cancers Is Associated With Tumor Histology. Int J Gynecol Cancer 27:784-790
Li, Yujun; Gonzalez Bosquet, Jesus; Yang, Shujie et al. (2017) Role of metadherin in estrogen-regulated gene expression. Int J Mol Med 40:303-310
Devor, Eric J; Gonzalez-Bosquet, Jesus; Warrier, Akshaya et al. (2017) p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers. Int J Oncol 50:1721-1728
Reyes, Henry D; Miecznikowski, Jeffrey; Gonzalez-Bosquet, Jesus et al. (2017) High stathmin expression is a marker for poor clinical outcome in endometrial cancer: An NRG oncology group/gynecologic oncology group study. Gynecol Oncol 146:247-253
Reyes, Henry D; Carlson, Matthew J; Devor, Eric J et al. (2016) Downregulation of FOXO1 mRNA levels predicts treatment failure in patients with endometrial pathology conservatively managed with progestin-containing intrauterine devices. Gynecol Oncol 140:152-60
Kavlashvili, Tamar; Jia, Yichen; Dai, Donghai et al. (2016) Inverse Relationship between Progesterone Receptor and Myc in Endometrial Cancer. PLoS One 11:e0148912
Dai, Donghai; Thiel, Kristina W; Salinas, Erin A et al. (2016) Stratification of endometrioid endometrial cancer patients into risk levels using somatic mutations. Gynecol Oncol 142:150-157

Showing the most recent 10 out of 13 publications