Breast cancer is a major health concern, with over 200,000 new diagnoses rendered each year in the United States. Approximately 1 in 8 women will develop breast cancer;thus, substantial effort has been directed at defining the basis of tumor development and progression. Breast cancer is represented by multiple disease- subtypes which are distinguished by differential markers, prognoses, and treatment regimens. In general, estrogen receptor, progesterone receptor and Her 2 negative disease (ie. triple negative breast cancer-TNBC) is faster progressing and more difficult to treat. Genetic analyses have established that specific tumor suppressor pathways are differentially disrupted in ER-negative disease, but the specific relevance of these events for tumor behavior or therapeutic response remains unclear. Here, we will delineate the coordinate role of RB-tumor suppressive pathway in the progression to ER-negative disease and the treatment of such tumors based on rational drug delivery. Two major areas of preliminary investigation support the rationale and hypothesis of the proposal: First, preliminary and independently published data demonstrate that loss of RB gene, and/or inactivation of the RB-pathway occurs at high frequency in basal ER-negative breast cancer. Supporting this contention, preliminary analyses of ductal carcinoma in situ lesions demonstrate that RB- pathway alterations are observed early in ER-negative disease. Furthermore, models of RB deletion exhibit molecular signatures indicative of basal ER-negative breast cancer. Thus, we will characterize the impact of RB-pathway on the behavior of pre-invasive lesions, underlying prognosis, and additional genetic events associated with progression to invasive cancer (Aim 1). Second, we observed in multiple preclinical models that loss of RB increases sensitivity to cytotoxic therapies. Subsequent independent analyses of ER-negative clinical specimens demonstrated that loss of RB is associated with an improved response to conventional cytotoxic chemotherapy. Given the frequency of RB loss in human disease, it is essential to define the impact of RB status for the molecular and cellular consequence response to therapy and define new regimens to specifically exploit the vulnerabilities encoded with the loss of RB (Aim 2). Collectively, the studies proposed herein will test the hypothesis that the RB-pathway plays a critical role in modulating disease progression and therapeutic response in triple negative breast cancer that could be rationally targeted.

Public Health Relevance

Breast cancer is a major health concern and the second leading cause of female death in the United States. This proposal is directed at understanding the function of a key tumor suppressive pathway in breast cancer, to gain a deeper understanding of the disease and define improved means to treat the disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA188650-01
Application #
8767039
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lively, Tracy (LUGO)
Project Start
2014-07-14
Project End
2019-06-30
Budget Start
2014-07-14
Budget End
2015-06-30
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Pathology
Type
Schools of Medicine
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75390
Adams, Thomas A; Vail, Paris J; Ruiz, Amanda et al. (2018) Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer. Mod Pathol 31:288-298
Witkiewicz, Agnieszka K; Chung, Sejin; Brough, Rachel et al. (2018) Targeting the Vulnerability of RB Tumor Suppressor Loss in Triple-Negative Breast Cancer. Cell Rep 22:1185-1199
Knudsen, Erik S; Witkiewicz, Agnieszka K (2017) The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends Cancer 3:39-55
Knudsen, Erik S; Hutcheson, Jack; Vail, Paris et al. (2017) Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Oncotarget 8:43678-43691
Knudsen, Erik S; Witkiewicz, Agnieszka K (2016) Defining the transcriptional and biological response to CDK4/6 inhibition in relation to ER+/HER2- breast cancer. Oncotarget 7:69111-69123
Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge et al. (2015) RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer. Cell Cycle 14:109-22
Asghar, Uzma; Witkiewicz, Agnieszka K; Turner, Nicholas C et al. (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14:130-46
Witkiewicz, Agnieszka K; Balaji, Uthra; Knudsen, Erik S (2014) Systematically defining single-gene determinants of response to neoadjuvant chemotherapy reveals specific biomarkers. Clin Cancer Res 20:4837-48