In 2012, we described one of the first uses of next-generation sequencing and bioinformatics approaches to rapidly and accurately identify a tumor-specific mutant protein that functioned as a major rejection antigen in a highly immunogenic (unedited), chemically induced mouse tumor line that was rejected when transplanted into nave syngeneic wild type mice. Since publishing this work, we have generated compelling preliminary data leading us to form the hypothesis that the antigens in clinically apparent (edited) tumor cells that are recognized by CD8+ T cells stimulated during successful checkpoint blockade cancer immunotherapy may also be tumor-specific mutant proteins and that they too can be rapidly identified using our genomics approach. In this proposal, we wish to formally test this hypothesis to provide a foundation for the eventual translation of our method to human cancer patients so as to facilitate personalization of cancer immunotherapies. To achieve this goal we will pursue three specific aims.
Specific Aim I : Identify Tumor-specific Mutational Antigens Eliciting CD8+ T Cell Responses to MCA Sarcomas and B16-F10 Melanoma With Differential Sensitivities to Checkpoint Blockade Therapy. Here we will focus our efforts on further validating and perhaps even improving our capacity to identify those antigens derived from tumor-specific mutant proteins that have potential therapeutic utility in cancer. We will ask whether tumor-specific mutant proteins are the favored targets of checkpoint blockade therapy and whether checkpoint blockade selects only the most antigenic of these mutations.
Specific Aim II. Determine Whether Vaccines Targeting Tumor-Specific Mutational Antigens, Either Alone or in Combination with Checkpoint Blockade, Can Therapeutically Control Growth of MCA Sarcomas or B16-F10 Melanoma. Here we will explore whether the tumor-specific mutant antigens we identify in Aim I can be used as a basis for therapeutic tumor-specific cancer vaccines. We will investigate the following three questions: Can personalized vaccines: (a) be used instead of checkpoint blockade? (b) improve checkpoint blockade in sensitive tumors? (c) evoke checkpoint blockade effectiveness in insensitive tumors? Specific Aim III. Define the Characteristics of Tumor-specific CD8+ T Cells that Specify Their Therapeutic Effectiveness. These experiments will seek to define the characteristics of activated tumor antigen-specific CD8+ T cells that result in successful cancer immunotherapy. We want to test the hypothesis that CyTOF and RNA-Seq analyses will facilitate identification of tumor-specific CD8+ T cells expressing specific phenotypic markers that can predict a favorable clinical outcome.

Public Health Relevance

Cancer Immunotherapy has made great strides in the past few years and was designated as 'The Breakthrough of the Year 2013' by Science Magazine. Although the specificity and destructive power of the immune system has, at last, begun to be harnessed for use in cancer, it remains unclear how the serious side- effects of this therapy can be reduced and why only a portion of cancer patients receiving cancer immunotherapy respond to it. We have developed a genomics and bioinformatics based approach that appears to be capable of identifying abnormal mutant proteins that are specifically expressed in cancer cells from each cancer patient and that can function as tumor specific antigenic targets for immunotherapy. The work proposed in this application seeks to use a preclinical mouse model of cancer to critically test (a) the ability of our method to identify antigenic mutant proteins in cancer cells; (b) whether our method can distinguish between cancers that express strong versus weak mutant antigens thus making individuals carrying those cancers good- versus bad-candidates for cancer immunotherapy, respectively; and (c) whether we can generate cancer vaccines based on an individual's tumor specific mutant antigenic proteins to enhance the success rates of current cancer immunotherapies. This work, if successful, could be rapidly translated to human cancer patients and underpin the development of personalized cancer immunotherapies that are safer and more effective than those currently available.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA190700-01A1
Application #
8887618
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Mccarthy, Susan A
Project Start
2015-04-01
Project End
2020-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Washington University
Department
Pathology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Theisen, Derek J; Davidson 4th, Jesse T; BriseƱo, Carlos G et al. (2018) WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:694-699
Lee, Amanda J; Chen, Branson; Chew, Marianne V et al. (2017) Inflammatory monocytes require type I interferon receptor signaling to activate NK cells via IL-18 during a mucosal viral infection. J Exp Med 214:1153-1167
Noguchi, Takuro; Ward, Jeffrey P; Gubin, Matthew M et al. (2017) Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape. Cancer Immunol Res 5:106-117
Fehlings, M; Simoni, Y; Penny, H L et al. (2017) Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8+ T cells. Nat Commun 8:562
Ward, Jeffrey P; Gubin, Matthew M; Schreiber, Robert D (2016) The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Adv Immunol 130:25-74
Parikh, Bijal A; Piersma, Sytse J; Pak-Wittel, Melissa A et al. (2015) Dual Requirement of Cytokine and Activation Receptor Triggering for Cytotoxic Control of Murine Cytomegalovirus by NK Cells. PLoS Pathog 11:e1005323
Gubin, Matthew M; Artyomov, Maxim N; Mardis, Elaine R et al. (2015) Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 125:3413-21
Apetoh, Lionel; Smyth, Mark J; Drake, Charles G et al. (2015) Consensus nomenclature for CD8(+) T cell phenotypes in cancer. Oncoimmunology 4:e998538
Ng, Cherie T; Sullivan, Brian M; Teijaro, John R et al. (2015) Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 17:653-61
Gubin, Matthew M; Zhang, Xiuli; Schuster, Heiko et al. (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577-81