Cancer is a major global health problem and is the second leading cause of death in the United States. The early detection of cancer is vital to help stop the spread of cancer. Circulating tumor cells (CTCs) are a hallmark of this invasive behavior of cancer. These cells detach from the primary tumor, break down the basement membrane of blood vessels, and migrate into the blood or lymphatic circulation. They translocate to distant tissues where they adapt to the new microenvironment, and eventually seed and colonize to form metastases. Current cancer detection techniques are not sensitive enough to be able to detect cancer at its earliest stage. However, existing treatments could be effective only when cancer has not metastasized yet. Therefore, being able to detect cancer early before metastasis increases survival rates. Recent studies have found that CTCs carry information about the primary tumor and have the potential to be valuable biomarkers for cancer diagnosis and progression. They also allow molecular characterization of certain biological properties of the primary tumor. Molecular characterization of CTCs has proven to have a great potential to assess the phenotypic and genotypic features of a cancer without the need for invasive biopsy of the primary tumor. This allows for minimally invasive patient monitoring and response assessment of cancer treatment. However, CTC detection is hindered by its low concentration in blood and contemporary techniques for CTC detection have had several major drawbacks such as low repeatability, sensitivity, and specificity. The goal of this supplemental application is to create an effective approach to capture CTCs from blood samples of cancer patients with high repeatability, sensitivity, and specificity for early cancer detection. This will be achieved by fabricating a gold-coated electro-micro-fluidic device with distinct capture and flow zones in the main channel (AuZonesChip) and using patterned dielectrophoretic force to direct cells from the flow zone into the capture zone. This separation of the capture and flow zones minimizes the negative impact of high flow speed. The polydimethylsiloxane (PDMS) electro-micro-fluidic device will be coated with a 15 nm thick gold layer and surface modified with thiolated capturing antibody. Thiolated capturing antibodies will be flown through the gold-coated electro-micro-fluidic device, to modify the surface of the main channel with the capturing antibody by utilizing the high affinity between gold and the thiol group. The surface antigens on CTCs from patient blood will allow them to be captured by antibodies modified on the surface of the device due to the high antigen- antibody binding affinity. Another important goal of this supplement application is to promote diversity in health- related research. This will be achieved by training postdoc from a minority group, who will be exemplary to encourage more minority groups to participate in biomedical science research.

Public Health Relevance

-Relevance to Public Health Current cancer detection techniques are low in sensitivity and specificity. To overcome these limitations, techniques that are highly sensitive and specific, and not reliant on invasive tissue biopsy are needed. This work will develop a novel micro-electro-fluidic technology with high sensitivity and specificity to capture circulating cancer cells for early cancer detection, which may greatly reduce cancer-related morbidity and mortality.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
3R01CA206366-04S1
Application #
10063652
Study Section
Program Officer
Venkatachalam, Sundaresan
Project Start
2018-07-01
Project End
2021-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Maryland College Park
Department
Biomedical Engineering
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
790934285
City
College Park
State
MD
Country
United States
Zip Code
20742
Li, Yujing; Liu, Yunhua; Xu, Hanchen et al. (2018) Heterozygous deletion of chromosome 17p renders prostate cancer vulnerable to inhibition of RNA polymerase II. Nat Commun 9:4394
Wang, Hai; Gao, Zan; Liu, Xuanyou et al. (2018) Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 9:562
Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P et al. (2018) The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 7:e1431085
Wang, Hai; He, Xiaoming (2018) Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells and Tumor. Methods Mol Biol 1831:59-67
Liu, Yunhua; Xu, Jiangsheng; Choi, Hyun Ho et al. (2018) Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer. Nat Commun 9:4718
Wang, Hai; Agarwal, Pranay; Zhao, Gang et al. (2018) Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Cent Sci 4:567-581
Liu, Yunhua; Xu, Hanchen; Van der Jeught, Kevin et al. (2018) Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer. J Clin Invest 128:2951-2965
Sun, Mingrui; Durkin, Patrick; Li, Jianrong et al. (2018) Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis. ACS Sens 3:410-417
Wang, Hai; Agarwal, Pranay; Liang, Yutong et al. (2018) Enhanced cancer therapy with cold-controlled drug release and photothermal warming enabled by one nanoplatform. Biomaterials 180:265-278
He, Xiaoming (2017) Microscale Biomaterials with Bioinspired Complexity of Early Embryo Development and in the Ovary for Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 3:2692-2701

Showing the most recent 10 out of 17 publications