Cancer is considered one of the most dilapidating health problems that the world is facing due to its physical, emotional, financial, and spiritual toll. Automating cancer diagnosis can ultimately impact its treatment and recovery. Computational algorithmic methods can greatly improve the efficiency of pathologists through partial or complete automation of the diagnostic process. Computer-aided diagnosis has augmented preventive check-ups for many medical conditions like breast cancer, colonic polyps, and lung cancer. Digitization of tissue slides has thus opened up the process of diagnosis through analysis of digital images. The dearth of highly trained pathologists who can address the growing diagnostic needs heightens the importance of such automation. Recent advances in big data analytics and in particular machine learning can possibly impact greatly the domain of computer-aided cancer diagnosis. Convolutional Neural Networks (CNNs) in particular have already revolutionized the domain of computer vision with performances in various cases compared to that exhibited by humans. One of the main factors that fueled the recent resurgence of CNNs is the availability of large datasets. CNNs adjust, via training, millions of parameters allowing them to learn complex and highly nonlinear dependencies among data (i.e., images). However, collecting such large amounts of annotated data (assigning them to one of many possible categories, e.g., benign vs. cancerous vs. other stages) is either challenging or very expensive or in many cases unavailable. This is definitely the case of the medical domain. Tissue slides from suspected cancerous regions are examined under a microscope and are classified as benign or malignant. CNNs offer a promising pathway to achieve some degree of automation in identifying cancerous cases in image data. This research work will explore the challenges of discovering the underlying discriminative features, hidden in the image and possibly different than those used by human experts, in order to improve the accuracy of diagnosis. We will also focus on algorithms to minimize the amount of data required to train the neural network without sacrificing performance and generalization.

Public Health Relevance

Cancer has been a major health concern and one of the leading causes of death in the US and around the world. Automating cancer diagnosis can impact cancer staging and ultimately its treatment, effectively leading to higher survival rates. This proposal' promises the creation of computational algorithmic methods that can lead to partial or complete automation of the cancer diagnostic process.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA225435-04
Application #
10086856
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Vanderpool, Robin Cline
Project Start
2018-02-01
Project End
2022-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
4
Fiscal Year
2021
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
University-Wide
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455