? Chronic abuse of substances such as cocaine leads to structural changes in the neurons of the ventral tegmental area/nucleus accumbens. The changes in dendritic branching, spine density and spine morphology that occur in the neurons comprising this common reward pathway presumably underlie some of the behavioral changes that characterize addiction. Although it is clear that DARPP-32 (Dopamine and cAMP-Regulated PhosphoProtein, 32 kDa) and PP-1 (Protein phosphatase-1) play key roles in integrating the signals impinging on medium spiny neurons, it is not yet clear how structural changes are regulated. Rho family small GTP binding proteins and the families of GDP/GTP exchange factors and GTPase activating proteins that control their activation are key regulators of cytoskeletal dynamics. Our preliminary data reveal a substantial increase in expression of Kalirin, a Rho family GDP/GTP exchange factor, following chronic cocaine treatment of adult male rats. Exogenous expression of Kalirin in organotypic slice cultures increases spine density, while antisense-mediated reductions in Kalirin levels result in a decrease in spine density. We will first complete our exploration of the effects of chronic cocaine exposure on Kalirin. Kalirin-7 interactors will be identified through immunological and biochemical analysis of extracts prepared from control and cocaine-treated rats. The major sites at which Kalirin-7 is phosphorylated under control and cocaine-treated conditions will be identified by tandem mass spectroscopic analysis of proteolytic digests. The alterations in spine-like structures observed in medium spiny neurons following changes in Kalirin-7 expression will be evaluated using biolistic transfection of organotypic slice cultures and primary neuronal cultures. Spine dynamics will be examined using time lapse imaging and GFP-tagged Kalirin. Our preliminary data demonstrate that several well-described cocaine-responsive signaling proteins interact with Kalirin. Cdk5 phosphorylates Kalirin-7 along with DARPP-32 and Pak. Kalirin activates and forms a complex with Pak, a key regulator of actin polymerization. Protein kinase A, which phosphorylates and inactivates Pak, also phosphorylates Kalirin. PP-1, a DARPP-32 target localized to spines, also binds to Kalirin. It is our hypothesis that Kalirin-7, through its interactions with these regulators, integrates the effects of diverse signaling pathways on spine formation. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA015464-05
Application #
7393263
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Pilotte, Nancy S
Project Start
2004-04-01
Project End
2011-03-31
Budget Start
2008-04-01
Budget End
2011-03-31
Support Year
5
Fiscal Year
2008
Total Cost
$303,156
Indirect Cost
Name
University of Connecticut
Department
Neurosciences
Type
Schools of Medicine
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Yan, Yan; Eipper, Betty A; Mains, Richard E (2016) Kalirin is required for BDNF-TrkB stimulated neurite outgrowth and branching. Neuropharmacology 107:227-238
Yan, Yan; Eipper, Betty A; Mains, Richard E (2015) Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex 25:3487-501
Ma, Xin-Ming; Miller, Megan B; Vishwanatha, K S et al. (2014) Nonenzymatic domains of Kalirin7 contribute to spine morphogenesis through interactions with phosphoinositides and Abl. Mol Biol Cell 25:1458-71
Kiraly, Drew D; Nemirovsky, Natali E; LaRese, Taylor P et al. (2013) Constitutive knockout of kalirin-7 leads to increased rates of cocaine self-administration. Mol Pharmacol 84:582-90
Eipper-Mains, J E; Kiraly, D D; Duff, M O et al. (2013) Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome. Genes Brain Behav 12:21-33
Eipper-Mains, Jodi E; Eipper, Betty A; Mains, Richard E (2012) Global Approaches to the Role of miRNAs in Drug-Induced Changes in Gene Expression. Front Genet 3:109
Ma, Xin-Ming; Huang, Jian-Ping; Xin, Xiaonan et al. (2012) A role for kalirin in the response of rat medium spiny neurons to cocaine. Mol Pharmacol 82:738-45
Deinhardt, Katrin; Kim, Taeho; Spellman, Daniel S et al. (2011) Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci Signal 4:ra82
Kiraly, Drew D; Lemtiri-Chlieh, Fouad; Levine, Eric S et al. (2011) Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function. J Neurosci 31:12554-65
Eipper-Mains, Jodi E; Kiraly, Drew D; Palakodeti, Dasaradhi et al. (2011) microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA 17:1529-43

Showing the most recent 10 out of 22 publications