Attempts to identify the neural basis of addiction have demonstrated a critical role for glutamate neurotransmission, particularly in the nucleus accumbens, in cocaine-seeking behavior. The experiments in the present proposal will examine the contribution of a novel source of glutamate, specifically nonvesicular glutamate release from cystineglutamate antiporters, to the behavioral and neurochemical effects of cocaine. These studies will test the primary hypothesis that cocaine-induced pathogenic neuroplasticity includes adaptations in cystine-glutamate antiporters, and targeting these adaptations represents a novel approach in treating addiction. Experiments in the first aim will determine whether glutamate released from cystine-glutamate antiporters blocks cocaine reinstatement by stimulating group 2/3 metabotropic glutamate receptors. This could potentially block cocaine reinstatement by preventing cocaine-induced elevations in extracellular glutamate and dopamine, which have been shown by others to be critical for cocaine reinstatement. Toward this end, the capacity of the group 2/3 mGluR antagonist to block N-acetylcysteine regulation of cocaine-induced elevations in extracellular glutamate and reinstatement will be examined. Experiments in the second aim will examine whether cocaine-induced plasticity involving cystine-glutamate antiporters emerges during the course of self-administration or withdrawal and whether these adaptations are sensitive to differential cocaine intake. In addition, these experiments will examine whether cocaine intake and length of withdrawal produce parallel changes in cocaine reinstatement and cocaine-induced plasticity involving cystine-glutamate antiporters. Finally, the last set of experiments will utilize a more clinically relevant procedure to examine the putative anti-craving efficacy of the cysteine prodrug N-acetylcysteine. Specifically, these experiments will examine the capacity of chronic administration of N-acetylcysteine to reverse the neurochemical and behavioral effects of cocaine. It is the goal of this proposal to reveal cystine-glutamate antiporters as a novel target for potential pharmacotherapies for cocaine addiction. Moreover, these experiments also have the potential to illustrate that nonvesicular release of glutamate by cystine-glutamate antiporters is a fundamental component of glutamate neurotransmission in both the normal and diseased states, which would have far reaching implications given the number of disorders that involve glutamate.
Showing the most recent 10 out of 16 publications