Genetic factors contribute significantly to the risk of cocaine abuse in humans. However, the potential role of epigenetic influences on addiction phenotypes remains unclear. A growing body of evidence indicates that environmental information can be inherited. Thus, epigenetic changes in the mammalian germline can act as a transgenerational carrier of environmental perturbations. Here, we describe a rat model developed in order to delineate a heritable phenotype resulting from the self-administration of cocaine. We found that while the male offspring of cocaine-experienced sires (BCocSired) had delayed acquisition and reduced maintenance of cocaine self-administration relative to the offspring of yoked saline controls (BSalSired), there was no difference in the acquisition of cocaine self-administration in female offspring. These novel results suggest that cocaine experienced sires confer a resistance to cocaine reinforcement in their male offspring.
The specific aims outlined in this application will assess specific mechanisms that may underlie this paternally transmitted phenotype associated with cocaine self-administration. The experiments in Specific Aim 1 are designed to assess epigenetic and behavioral mechanisms through which paternal cocaine self-administration may influence the behavior of their descendants.
In Specific Aim 2 we will evaluate the acquisition of cocaine and food self-administration in the offspring (F1) and grand offspring (F2) of male rats that self-administered cocaine.
Specific Aim 3 focuses on the potential role of medial prefrontal cortical brain-derived neurotrophic factor in the acquisition of cocaine self-administration in F1 and F2 CocSired rats. The preliminary data described in this application are novel and establish the inheritance of an addiction-related phenotype using an animal model. Our finding that the cocaine self-administration is reduced in BCocSired relative to BSalSired rats is robust and has significant implications in terms of human health. The next step is to determine the cellular and molecular mechanisms underlying this phenotype. The experiments described in this application will use state-of-the-art cellular, molecular and behavioral methodologies to i) examine epigenetic and behavioral mechanisms whereby cocaine-associated information can be transmitted from sires to offspring, ii) determine if the inherited cocaine resistance phenotype is transgenerational, and iii) assess specific neuronal mechanisms that may underlie this paternally transmitted phenotype associated with cocaine self- administration.

Public Health Relevance

A growing body of evidence indicates that environmental information can be inherited, which suggests that changes in the mammalian germline can act as a trans-generational carrier of environmental information. Here, we describe a rat model developed in order to delineate heritable behavioral characteristics resulting from the self-administration of cocaine. Our results suggest that cocaine experienced sires confer a resistance to cocaine reinforcement in their male offspring. The experiments described in this application will use state-of- the-art cellular, molecular and behavioral methodologies to examine the mechanisms whereby cocaine- associated information can be transmitted from sires to offspring and assess specific neuronal changes that may underlie this paternally transmitted phenotype associated with cocaine self-administration.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
4R01DA033641-05
Application #
9020940
Study Section
Special Emphasis Panel (ZDA1)
Program Officer
Volman, Susan
Project Start
2012-04-01
Project End
2017-02-28
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Psychiatry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Swinford-Jackson, Sarah E; Pierce, R Christopher (2018) Harmony and heresy of an L-type calcium channel inhibitor: suppression of cocaine seeking via increased dopamine transmission in the nucleus accumbens. Neuropsychopharmacology 43:2335-2336
Pierce, R Christopher; Fant, Bruno; Swinford-Jackson, Sarah E et al. (2018) Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 43:1471-1480
Wimmer, M E; Briand, L A; Fant, B et al. (2017) Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry 22:1641-1650
McCarthy, Deirdre M; Bell, Genevieve A; Cannon, Elisa N et al. (2016) Reversal Learning Deficits Associated with Increased Frontal Cortical Brain-Derived Neurotrophic Factor Tyrosine Kinase B Signaling in a Prenatal Cocaine Exposure Mouse Model. Dev Neurosci 38:354-364
White, Samantha L; Vassoler, Fair M; Schmidt, Heath D et al. (2016) Enhanced anxiety in the male offspring of sires that self-administered cocaine. Addict Biol 21:802-810
Sadri-Vakili, Ghazaleh (2015) Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res 1628:50-9
Schmidt, H D; McFarland, K N; Darnell, S B et al. (2015) ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol Psychiatry 20:1460-6
Schmidt, Heath D; Kimmey, Blake A; Arreola, Adrian C et al. (2015) Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addict Biol 20:285-96
Vassoler, F M; Byrnes, E M; Pierce, R C (2014) The impact of exposure to addictive drugs on future generations: Physiological and behavioral effects. Neuropharmacology 76 Pt B:269-75
Mietlicki-Baase, Elizabeth G; Ortinski, Pavel I; Reiner, David J et al. (2014) Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. J Neurosci 34:6985-92

Showing the most recent 10 out of 17 publications