Neuroscience research with animal models implicates neuroadaptation in the stress response as a critical mechanism in the etiology of addiction across multiple classes of drugs including nicotine. Repeated homeostatic adjustments in the brain's stress systems due to chronic drug administration eventually lead to persistent compensatory adaptations in the structures involved in emotional response and its regulation. Among smokers, these stress neuroadaptations result in deregulated negative affect when nicotine-deprived and provide the strong motivational press for further smoking that manifests as urge and increased risk for smoking cessation failure. Animal models have provided substantial evidence to support this stress neuroadaptation thesis in addiction However, programmatic laboratory research that examines the stress response in nicotine deprived and non- deprived smokers (relative to non-smokers) is necessary to confirm that our understanding of stress neuroadaptations from animal models translate to addiction etiology in smokers. Negative affect is the core motivational element of the human drug withdrawal syndrome across additive drugs including nicotine. Unfortunately, much of what we know about these motivationally critical affective processes in humans is based on a narrow range of measures collected in isolation. The examination of the characteristics and neurobiological substrates of negative affect has not kept pace with the rapid conceptual, methodological, and measurement advances in the affective sciences over the past decade. Moreover, complementary methods (e.g., laboratory task manipulations, clinical treatment interventions) and measurement approaches (e.g., psychophysiology, ecological momentary assessment) are rarely combined. The research in this application capitalizes on recent research with both animals and humans that has synthesized precise laboratory manipulations of stress with sensitive psycho physiological measurement of startle reflex potentiating to parse the affective response to stress into its constituent components. In particular, startle potentiating during uncertain (vs. certain) threats holds promise as a biomarker of stress neuroadaptation following chronic nicotine or other drug use. We propose to measure stress neuroadaptation in the laboratory via startle potentiating during uncertain threat in two validated cued threat tasks among nicotine deprived and non-deprived smokers and non-smokers. Smokers will be subsequently assigned to combo NRT or placebo during smoking cessation treatment and will report on episodic stressors, negative effect, smoking urge, and smoking via ecological momentary assessment procedures. Treatment outcome will be assessed at 2 weeks post-quit. The broad goals of this research are to identify etiologically relevant psycho physiological biomarkers of stress neuroadaptation that results from chronic smoking. We evaluate the impact of this stress neuroadaptation on smokers' real-world affect, urge and smoking during smoking cessation treatment. We also evaluate if NRT can attenuate the influence of this stress neuroadaptation on smoking cessation outcomes via its effects on withdrawal.

Public Health Relevance

This research will translate neuroscience findings from animal models to clinical research on tobacco dependence in humans. Its goal is to identify precise biomarkers of etiologically relevant stress neuroadaptations that result from chronic smoking. This research can aid targeted pharmacological and psychological treatment development and identify processes that are obstacles to cessation of smoking and/or increase risk for relapse among smokers.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
4R01DA033809-05
Application #
9098663
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Gordon, Harold
Project Start
2012-08-01
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kaye, Jesse T; Bradford, Daniel E; Magruder, Katherine P et al. (2017) Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence. J Stud Alcohol Drugs 78:353-371
Kaye, Jesse T; Bradford, Daniel E; Curtin, John J (2016) Psychometric properties of startle and corrugator response in NPU, affective picture viewing, and resting state tasks. Psychophysiology 53:1241-55
Bradford, Daniel E; Curtin, John J; Piper, Megan E (2015) Anticipation of smoking sufficiently dampens stress reactivity in nicotine-deprived smokers. J Abnorm Psychol 124:128-36
Bradford, Daniel E; Starr, Mark J; Shackman, Alexander J et al. (2015) Empirically based comparisons of the reliability and validity of common quantification approaches for eyeblink startle potentiation in humans. Psychophysiology 52:1669-81
Bradford, Daniel E; Kaye, Jesse T; Curtin, John J (2014) Not just noise: individual differences in general startle reactivity predict startle response to uncertain and certain threat. Psychophysiology 51:407-11
Bradford, Daniel E; Magruder, Katherine P; Korhumel, Rachel A et al. (2014) Using the threat probability task to assess anxiety and fear during uncertain and certain threat. J Vis Exp :51905
Bradford, Daniel E; Shapiro, Benjamin L; Curtin, John J (2013) How bad could it be? Alcohol dampens stress responses to threat of uncertain intensity. Psychol Sci 24:2541-9
Hefner, Kathryn R; Moberg, Christine A; Hachiya, Laura Y et al. (2013) Alcohol stress response dampening during imminent versus distal, uncertain threat. J Abnorm Psychol 122:756-69
Hogle, Joanne M; Kaye, Jesse T; Curtin, John J (2010) Nicotine withdrawal increases threat-induced anxiety but not fear: neuroadaptation in human addiction. Biol Psychiatry 68:719-25