The long-term objective of this research is to develop a scientific basis for standardization of acoustic voice analysis. Information contained in the microphone signal of a speaker is being used today to test various aspects of human body function and condition. Attempts are being made to study mental disorders, neurological disease, aging, emotion, veracity, stress, and a host of respiratory and laryngeal disorders. Effects of smoking, alcohol, drugs, and pollution on the human voice samples, or for extracting acoustic measures. Furthermore, there is no research contributes toward the development of such standards and interpretations.
Specific aims are (1) to develop and propose an ANSI standard for fundamental frequency and peak-to-peak amplitude extraction of recorded signals, (2) to develop an auditory training and calibration tape for acoustic and perceptual analysis, (3) to develop a set of acoustic measures that quantify strength, speed, accuracy, and stability in phonatory control, (4) to develop a set of vocometric tasks for assessment of phonatory form patients and subjects. A series of steady phonations, phonatory transitions (reversals), and sentences are proposed within the framework of the Voice Range Profile (phonetogram). Since some of the measured acoustic effects are subtle, criteria are examined for adequate fidelity in recording, filtering, and sampling of voiced utterances. Microphones, tape recorders, and recording environments are investigated in the contest of voice perturbation measurement. Questions regarding length and multiplicity (number of tokens) of acoustic observations are raised and answered.
Showing the most recent 10 out of 11 publications