The long-term goal of this research program is a comprehensive description of human auditory cortex organization. What are its structural components and what are their functions? How do these elements work together to produce the perceptual experience of hearing? Underlying current conceptions is a regional (modular) system of organization formed by an interconnected group of cortical areas, but the number of areas involved and their connections are unknown for humans. A testable working model of human auditory cortex has not been developed, even though such models are fundamental to studies of auditory cortex in other species. To establish this model, detailed neuroanatomical analyses will be used to reveal the underlying structures that comprise this part of the brain. Efforts will focus on the planum temporale in the superior temporal lobe, which is thought to be an important region for integrating the neural codes required to perceive and interpret sound. Although often treated as a single area, the planum temporale appears to contain several areas that are anatomically and physiologically distinct. Temporal lobes will be obtained postmortem and processed for marker proteins of neurons, axons, neurofilaments, and key enzymes. Areas will be profiled and compared on the basis several measurements (surface area, cortical thickness, neuron density, optical density). The research will be guided and grounded by comparative studies of other primates, which continue to provide an invaluable foundation for studies of auditory cortex in humans. In addition, parallel studies in monkeys will focus on the connections and neuron response properties in the posterior temporal lobe that correspond to the human planum temporale. The relevance of this research applies broadly to patient populations in which the temporal lobe is involved, and directly supports related areas of research involving both normal and clinical populations. These include: 1) Noninvasive methods to study auditory activity in the human brain (e.g., functional imaging);2) Neurosurgical planning and assessment of function associated with surgery, injury, or related pathology (e.g., cerebrovascular accidents, tumors);3) Evaluation of cortical function in clinical populations in which auditory processing or memory is affected (e.g., Alzheimer's, schizophrenia, autism, dyslexia, epilepsy, language delay, hearing impairment, and aging);and 4) Maturational and genomic studies of auditory cortex in normal and clinical populations.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC004318-09
Application #
7792373
Study Section
Cognitive Neuroscience Study Section (COG)
Program Officer
Platt, Christopher
Project Start
1999-12-01
Project End
2012-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
9
Fiscal Year
2010
Total Cost
$502,887
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Hackett, Troy A (2015) Anatomic organization of the auditory cortex. Handb Clin Neurol 129:27-53
Kajikawa, Yoshinao; Frey, Stephen; Ross, Deborah et al. (2015) Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey. J Neurosci 35:4140-50
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H (2013) Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. J Chem Neuroanat 50-51:21-38
Miller, Daniel J; Lackey, Elizabeth P; Hackett, Troy A et al. (2013) Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (Otolemur garnetti). J Comp Neurol 521:3804-16
Torii, Masaaki; Hackett, Troy A; Rakic, Pasko et al. (2013) EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. Cereb Cortex 23:775-85
Smiley, John F; Hackett, Troy A; Preuss, Todd M et al. (2013) Hemispheric asymmetry of primary auditory cortex and Heschl's gyrus in schizophrenia and nonpsychiatric brains. Psychiatry Res 214:435-43
Smiley, John F; Bleiwas, Cynthia (2012) Embedding matrix for simultaneous processing of multiple histological samples. J Neurosci Methods 209:195-8
de la Mothe, Lisa A; Blumell, Suzanne; Kajikawa, Yoshinao et al. (2012) Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 295:800-21
Bryant, Katherine L; Suwyn, Carolyn; Reding, Katherine M et al. (2012) Evidence for ape and human specializations in geniculostriate projections from VGLUT2 immunohistochemistry. Brain Behav Evol 80:210-21
Camalier, Corrie R; D'Angelo, William R; Sterbing-D'Angelo, Susanne J et al. (2012) Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci U S A 109:18168-73

Showing the most recent 10 out of 24 publications