The vast majority of hearing and balance impairments are thought to be due to death of sensory hair cells, the receptor cells of the inner ear. These cells are unusually metabolically active and hypersensitive to damage from overstimulation, exposure to some therapeutic drugs and environmental toxins, and to aging. Growing evidence indicates that hair cell loss from gram-negative antibiotics, antineoplastic drugs, excessive noise exposure and possibly aging share some common cellular pathways. The goals of our research program, requesting continued funding for Years 16-20, are to understand the pathways that regulate death and survival of inner ear hair cells, and to use this information to facilitate development of therapeutic agents to prevent hearing loss. Three groups of experiments are proposed: a) determine roles of the lysosome in both promoting and preventing damage caused by aminoglycoside antibiotics; b) identify the cellular mechanisms and molecular targets of a new therapeutic drug that protects hair cells against antibiotic-induced ototoxic damage; and c) test whether this new therapeutic will protect in vivo against cisplatin toxicity. An assumption of our work is that highly conserved properties of HC function render them unusually vulnerable to antibiotic and antineoplastic drug toxicity. Thus, in addition to clinical implications for preventing hearing and balance disorders, these studies may also reveal important aspects of normal HC function that give rise to their vulnerability.

Public Health Relevance

In the US, over 36 million adults have trouble hearing. There are a variety of causes but no clinically proven treatments to restore normal hearing or prevent hearing loss. Our research will reveal how the sound sensing cells of the ear are damaged, identify pathways that may underlie the variation in susceptibility to hearing loss, and discover drugs that may prevent hearing loss.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC005987-17
Application #
9884751
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Freeman, Nancy
Project Start
2003-04-01
Project End
2024-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
17
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Washington
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Ryals, Matthew; Morell, Robert J; Martin, Daniel et al. (2018) The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Front Cell Neurosci 12:445
Chowdhury, Sarwat; Owens, Kelly N; Herr, R Jason et al. (2018) Phenotypic Optimization of Urea-Thiophene Carboxamides To Yield Potent, Well Tolerated, and Orally Active Protective Agents against Aminoglycoside-Induced Hearing Loss. J Med Chem 61:84-97
Schrauwen, Isabelle; Kari, Elina; Mattox, Jacob et al. (2018) De novo variants in GREB1L are associated with non-syndromic inner ear malformations and deafness. Hum Genet 137:459-470
Hailey, Dale W; Esterberg, Robert; Linbo, Tor H et al. (2017) Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. J Clin Invest 127:472-486
Sebe, Joy Y; Cho, Soyoun; Sheets, Lavinia et al. (2017) Ca2+-Permeable AMPARs Mediate Glutamatergic Transmission and Excitotoxic Damage at the Hair Cell Ribbon Synapse. J Neurosci 37:6162-6175
Esterberg, Robert; Linbo, Tor; Pickett, Sarah B et al. (2016) Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 126:3556-66
Stawicki, Tamara M; Hernandez, Liana; Esterberg, Robert et al. (2016) Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3 (Bethesda) 6:2225-35
Suli, Arminda; Pujol, Remy; Cunningham, Dale E et al. (2016) Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. J Cell Sci 129:2250-60
Yoshimatsu, Takeshi; D'Orazi, Florence D; Gamlin, Clare R et al. (2016) Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo. Nat Commun 7:10590
Thomas, Eric D; Cruz, Ivan A; Hailey, Dale W et al. (2015) There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdiscip Rev Dev Biol 4:1-16

Showing the most recent 10 out of 41 publications