The long term goal of this proposal is to develop a molecular understanding of the mechanisms of sweet receptor activation by combining experimental and computational approaches. The taste preference for sweet compounds allows animals to seek out high carbohydrate energy sources to exploit for food. The sweet receptor is composed of two type 1 taste receptor monomers (T1R2 plus T1R3), apparently as a heterodimer. This proposal uses mutagenesis of the sweet receptor, expression in HEK 293 cells, calcium imaging, bioluminescent-resonance-energy-transfer and surface expression of receptors, to probe the sweet receptor's interaction with ligands.
Aim 1 uses computational approaches to homology model the large extracellular domain of the heterodimer, using as template the crystal structure of the extracellular domain of mGluRl , another member of this family of receptors. The resulting homology models are tested and refined by mutagenesis of residues in T1R2+T1R3 predicted to form the dimerization interface, and then the expressed receptors are assayed for responses to sweet ligands and formation of heterodimers. The resulting optimized models will be useful to explain effects of mutations on ligand-induced activity in subsequent Aims.
Aim 2 seeks to discover T1R2 residues that influence ligand-receptor interaction and receptor activation.
Aim 2 a uses the alignment of the TIR s with mGluRl to choose potential ligand-interacting residues in T1R2, then mutate them to discover their effects on receptor responses to sweet ligands.
Aim 2 b employs differences in species-specific taste perception, and chimeric human/mouse T1R2 receptors to track portions of the receptor responsible for human-like responses to sweeteners.
Aim 2 c uses mutagenesis to scan the surface-accessible arginines and lysines that might interact with the brazzein dipole. Mutated receptors are expressed, assayed for loss of responsiveness toward brazzein, then brazzein mutants are tested for the ability to compensate for receptor mutations.
Aim 3 follows up on our recent observation that two residues in the cysteine-rich linker region of human T1R3 are essential for receptor responses to brazzein. We have proposed makin g additional mutations in this region to identify and characterize those residues that enable the human receptor to respond to brazzein. The knowledge gained from these studies will provide a working model for sweet receptor activity that may lead to the design of superior artificial sweeteners. Our molecular studies of the sweet receptor may shed light on transduction mechanisms common to other members of this family of receptors, such as the calcium-sensing receptor, which regulates calcium metabolism, and the metabotropic glutamate receptors, which are involved in multiple neurological responses.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC006696-01A2
Application #
6970089
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Davis, Barry
Project Start
2005-07-01
Project End
2010-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
1
Fiscal Year
2005
Total Cost
$339,000
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Maillet, Emeline L; Cui, Meng; Jiang, Peihua et al. (2015) Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Chem Senses 40:577-86
Venkitakrishnan, Rani Parvathy; Benard, Outhiriaradjou; Max, Marianna et al. (2012) Use of NMR saturation transfer difference spectroscopy to study ligand binding to membrane proteins. Methods Mol Biol 914:47-63
Dittli, Sannali M; Rao, Hongyu; Tonelli, Marco et al. (2011) Structural role of the terminal disulfide bond in the sweetness of brazzein. Chem Senses 36:821-30
Gupta, Achla; Mulder, Jan; Gomes, Ivone et al. (2010) Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 3:ra54
Assadi-Porter, Fariba M; Tonelli, Marco; Maillet, Emeline L et al. (2010) Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Biochim Biophys Acta 1798:82-6
Assadi-Porter, Fariba M; Maillet, Emeline L; Radek, James T et al. (2010) Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. J Mol Biol 398:584-99
Assadi-Porter, Fariba M; Tonelli, Marco; Maillet, Emeline et al. (2008) Direct NMR detection of the binding of functional ligands to the human sweet receptor, a heterodimeric family 3 GPCR. J Am Chem Soc 130:7212-3
Cui, Meng; Mezei, Mihaly; Osman, Roman (2008) Modeling dimerizations of transmembrane proteins using Brownian dynamics simulations. J Comput Aided Mol Des 22:553-61
Cui, Meng; Jiang, Peihua; Maillet, Emeline et al. (2006) The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des 12:4591-600