IinnovatRivecwenatydseovfetlroepamtienngtsanind pcorecvhelenatrinpghsyesniosolorignyeuarnadl mheoalreicnuglalorsbsi.olTohgeysehavdevpanavcesd wthiellwulatyimfoartenleywbeanedfit millions of individuals. However, for this to occur, it will be necessary to develop a safe and reliable Irmeseecahracnhisemffofrotridsetloivdersiingnbaiondacdtievelcopmapvoeurnsdastildeirleocntlgy-tteormthedriungnedreeliavre. ryThseysgteomal fofrththies ctroelalatmboernatiovfeinner ear disorders. Working together, biomedical engineers from Draper Laboratory with experience and expertise IiandthEeadreIvnefliormpmareyntwoifthderuxgpedretilsieveirnyimnniecroesayrsptehmys,ioalondgyc,lipnhiacriamnascaonlodgsyciaendtisottsolforogmic tshuergMeraysswacilhluesnegttisneEeyr,e evaluate and perfect a drug delivery system for the treatment of inner ear disorders. This device will have Ibroad aTpphleicdaetsioignacnodntchepptointecnlutidaelsfoarnriemvpolauntitoednizdienvgictehethtraetaftimtsewntitohfinhtehaerimngasltosisd. cavity of humans. The device contains an externally-programmable pump to recirculate perilymph, an intracochlear catheter inserted Iicnotnoctehnetrsactaeldabtyiomapctainvietchoromupgohuandcso,cahnledosetonmsoyrs, afomr idxeitnegctcinhgamanbdertrwaintshmeixtteinrngaflloywpraongdrapmremssaubrleindfeolirvmeraytiofn. The core of the system is derived from a novel drug dispensing microsystem that the Draper team has Itdersmign(oende, fyaebaricantdedg,raenatdert)esdtedlivoevreyrstyhsetepmas,tcsoenvtearianlinygeatrhse.rTapheutilctrac-omipnoiautnudri,zdeidspdenvsiicnegismaechoamnpislemte,, long- control electronics, and power supply. IcmoinctrionmuToauchhseirnaeiecmdir,scfuolulfaitdthioecnopnorotfrpoaolnsdaylisnatferumesti;o(n3(1)o)efsdcteaovbmelilpsohpusanundrsginicnteatrolfpaprceoercitleoydmtuhrpehsi;na(n2ed)rdeavtresrlmuoipitnaebnledienfvoteircgcerhaftroeordnm,ic,factor Iceaolnendcstrtreroalneianicstse,fmtoerelecimhapentlraiysnm,tatanipodpnsrpoinepcrtihifaeytempfoaowsrteoarirdsaoncuagrvecieoty;f;ac(na4dn)d(d6ied)vaetveloatphluearntaepimsieapsf;elat(yn5t)andbdelevedflfroiucpgaclsoytwoirnapgopewrereleirsmceoirnvnaotriyor,lafnililminagl, Iexperiments, using prototype devices to deliver compounds to the inner ear.
Tandon, Vishal; Kang, Woo Seok; Robbins, Tremaan A et al. (2016) Microfabricated reciprocating micropump for intracochlear drug delivery with integrated drug/fluid storage and electronically controlled dosing. Lab Chip 16:829-46 |
Tandon, Vishal; Kang, Woo Seok; Spencer, Abigail J et al. (2015) Microfabricated infuse-withdraw micropump component for an integrated inner-ear drug-delivery platform. Biomed Microdevices 17:37 |
Kim, Ernest S; Gustenhoven, Erich; Mescher, Mark J et al. (2014) A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. Lab Chip 14:710-21 |
Pararas, Erin E Leary; Borkholder, David A; Borenstein, Jeffrey T (2012) Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev 64:1650-60 |
Pararas, Erin E Leary; Chen, Zhiqiang; Fiering, Jason et al. (2011) Kinetics of reciprocating drug delivery to the inner ear. J Control Release 152:270-7 |
Borenstein, Jeffrey T (2011) Intracochlear drug delivery systems. Expert Opin Drug Deliv 8:1161-74 |
McCall, Andrew A; Swan, Erin E Leary; Borenstein, Jeffrey T et al. (2010) Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear 31:156-65 |
Swan, Erin E Leary; Peppi, Marcello; Chen, Zhiqiang et al. (2009) Proteomics analysis of perilymph and cerebrospinal fluid in mouse. Laryngoscope 119:953-8 |
Handzel, Ophir; Wang, Haobing; Fiering, Jason et al. (2009) Mastoid cavity dimensions and shape: method of measurement and virtual fitting of implantable devices. Audiol Neurootol 14:308-14 |
Mescher, Mark J; Swan, Erin E Leary; Fiering, Jason et al. (2009) Fabrication Methods and Performance of Low-Permeability Microfluidic Components for a Miniaturized Wearable Drug Delivery System. J Microelectromech Syst 18:501-510 |
Showing the most recent 10 out of 13 publications