High levels of speech perception in quiet are currently available to a significant percentage of modern cochlear implant recipients. In a noisy background, however, particularly if that noise is competing speech, speech perception is dramatically impaired. One possible method for improving speech perception in noise is to improve the temporal representation of speech in discharge patterns of electrically stimulated auditory nerve fibers. This method would also be expected to improve the performance of bilateral implant recipients on tasks requiring brainstem analysis of interaural timing. Detailed biophysical models and animal studies have demonstrated that improved temporal representation can be accomplished through the use of """"""""conditioning stimuli"""""""" - trains of unmodulated high-rate pulses that desynchronize activity of auditory neurons to competing signals. Use of this procedure has led to dramatically increased speech perception in quiet and/or noise in some subjects, but not in others. The goal of the proposed work is to optimize the presentation of both the speech signal and the conditioner so as to maximize speech perception in quiet and noise for unilateral implant recipients, as well as improve perception of temporally-based lateralization and binaural unmasking in bilateral implantees. Because temporal pitch mechanisms demand accurate place information if they are to be useful, and pitch is thought critical for speech discrimination in competing speech, filter-to-electrode mappings will be manipulated in conditioned speech processors to maximize performance on a test of spondees in steady-state noise, """"""""babble noise"""""""", temporally modulated noise, as well as on HINT sentences in speech-shaped noise. The results will allow optimization of conditioned processors for unilateral and bilateral cochlear implant recipients. In those bilateral implant recipients who have interaural timing perception for electrical stimuli in the physiologic range, this work has the potential to provide significant additional binaural benefits from a clinical speech processor beyond those currently available via interaural amplitude differences. In unilateral implantees, this work has already demonstrated substantial benefit in a limited number of subjects; it is our goal to deliver these benefits to the broader population of implant recipients. ? ?
Showing the most recent 10 out of 28 publications