Our long-term goal is to understand the detailed mechanisms of the functional role of K channels in the inner ear. The importance of K channels is underpinned by the fact that mutations of KCNQ channels results in deafness in humans as seen in Jervell Lang Nielson syndrome (JLNS), and an autosomal dominant form of nonsyndromic progressive hearing loss (PHL: DFNA2). To understand the underlying mechanisms of KCNQ channel functions, we are conducting experiments that are revealing surprising, yet insightful results that may delineate the cellular and molecular mechanisms of the channel in normal and in disease states. A diverse class of functionally distinct form of alternatively-spliced KCNQ4 channels is expressed in the cochlea with distinct tonotopic profiles. However, because the channels'form heteromultimers, a dominant-negative form of one KCNQ channel cripples the function of the entire class of K channels in the inner ear. Even more surprising is the finding that different splice variants of the channel have a paradoxical mechanism for K+ extrusion;some of the KCNQ4 isoforms are more efficient in K+ extrusion when the external K+ concentration increases, making the channel a key protein in K+ regulation in the inner ear.
In Aim 1, we hypothesize although KCNQ2-5 channels are derived from different genes, the channels interact to produce diverse current phenotypes in the inner ear to confer a pivotal role a K+ homeostasis. Because of the unique interaction, a dominant negative (DN) version of one form cripples the entire class of KCNQ2-5 in the inner ear. We will clone the inner ear-specific channels, localize their differential expression and determine the molecular determinants of their functions. The mechanisms of modulation of KCNQ4 by interacting protein partners and second messengers will also be assessed.
In Aim 2, we hypothesize that differential expression of different isoforms/alternative splice variants is the underlying mechanisms for the base-to-apex PHL seen in mutations of KCNQ4 channels. Finally, we will determine the functional determinants of the channel that allow it to extrude K+ in increased external K+. Thus, testing the hypothesis that crucial to the role of KCNQ4 channels in the inner ear is their paradoxical feature with some isoforms having enhanced extrusion of K+ even in the presence of increased extracellular K+. We will use molecular biological, (cloning) biochemical (yeast 2-hybrid systems and siRNA), and functional electrophysiological techniques to address the Aims of the proposal. All experiments will use mice as model. Collectively, these studies will substantially expand our understanding of the cellular mechanisms for the regulation of K+ in the inner ear. Understanding the role of KCNQ channels and their associated proteins in the inner ear is necessary to design therapies for hearing loss (e.g. PHL).7

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC008649-02
Application #
7575259
Study Section
Auditory System Study Section (AUD)
Program Officer
Freeman, Nancy
Project Start
2008-04-01
Project End
2013-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
2
Fiscal Year
2009
Total Cost
$375,750
Indirect Cost
Name
University of California Davis
Department
Neurosciences
Type
Schools of Arts and Sciences
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Liu, Huizhan; Pecka, Jason L; Zhang, Qian et al. (2014) Characterization of transcriptomes of cochlear inner and outer hair cells. J Neurosci 34:11085-95
He, David Z Z; Lovas, Sándor; Ai, Yu et al. (2014) Prestin at year 14: progress and prospect. Hear Res 311:25-35
Gao, Yanhong; Yechikov, Sergey; Vázquez, Ana E et al. (2013) Impaired surface expression and conductance of the KCNQ4 channel lead to sensorineural hearing loss. J Cell Mol Med 17:889-900
Gao, Yanhong; Yechikov, Sergey; Vazquez, Ana E et al. (2013) Distinct roles of molecular chaperones HSP90? and HSP90? in the biogenesis of KCNQ4 channels. PLoS One 8:e57282
Tang, Jie; Pecka, Jason L; Fritzsch, Bernd et al. (2013) Lizard and frog prestin: evolutionary insight into functional changes. PLoS One 8:e54388
Engle, James R; Tinling, Steve; Recanzone, Gregg H (2013) Age-related hearing loss in rhesus monkeys is correlated with cochlear histopathologies. PLoS One 8:e55092
Tan, Xiaodong; Pecka, Jason L; Tang, Jie et al. (2012) A motif of eleven amino acids is a structural adaptation that facilitates motor capability of eutherian prestin. J Cell Sci 125:1039-47
Peng, Hong; Liu, Miao; Pecka, Jason et al. (2012) Proteomic analysis of the organ of corti using nanoscale liquid chromatography coupled with tandem mass spectrometry. Int J Mol Sci 13:8171-88
Tang, Jie; Pecka, Jason L; Tan, Xiaodong et al. (2011) Engineered pendrin protein, an anion transporter and molecular motor. J Biol Chem 286:31014-21
Nie, Liping (2008) KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 16:441-4

Showing the most recent 10 out of 11 publications