This proposal uses a translational approach to improve the analysis of hearing with novel cochlear implant (CI) sound processing strategies. Psychophysical methods are used to evaluate auditory processing capabilities with a variety of sound processing approaches. Hearing abilities are analyzed with three basic psychophysical tests that measure abilities important for clinical success: spectral-ripple discrimination, temporal modulation detection and Schroeder-phase discrimination.
Two aims are proposed: 1) Demonstrate that the psychophysical tests are useful tools from improving the evaluation of hearing with cochlear implants and 2) Evaluate and help guide the design of cochlear implant sound processing with the results. The results of these studies are expected to advance our understanding of auditory processing capabilities with cochlear implants and expedite the process of evaluating novel strategies. Furthermore, the methods could be employed to evaluate any future treatment for severe hearing loss including hybrid implants and genetic treatments.
A cochlear implant is a surgically implanted device that provides hearing for the deaf and profoundly hearing impaired. The primary purpose of this project is to develop better tools for testing hearing with a cochlear implant. The results will provide new knowledge about hearing with a variety of cochlear implant processing strategies which will help accelerate the development of technologies designed for improving hearing for the deaf and profoundly hearing impaired.
Showing the most recent 10 out of 15 publications