The advanced signal-processing algorithms used in digital hearing aids have improved average hearing aid benefit and satisfaction. However, response to hearing aids is highly variable, with some individuals reporting much more benefit than others. This variability is most evident among older listeners. An important issue is what levels of advanced hearing aid processing are necessary to achieve success with hearing aids in individual listeners. Every form of nonlinear signal processing has its own set of trade-offs of improved audibility versus increased modification of the signal caused by the signal processing. However, there are no effective procedures for determining who will benefit from the processing or how the processing should be adjusted for the individual listener. The long term goal of this research is use evidence-based clinical tests to guide the selection of signal processing that is most appropriate for individual older adults wearing hearing aids in their own listening environments. The first specific aim of this study is to characterize variability in response to signal manipulation among older adults and to determine what patient factors are related to that variability. The first experiment measures response to signal modification caused by several types of hearing aid processing under controlled laboratory conditions and relates those responses to patient factors. The second experiment extends those concepts to wearable hearing aids in the listener's own environment. The second specific aim is to determine prospectively the appropriate level of hearing-aid signal manipulation for an individual and to validate that determination, under clinical conditions. The third experiment will translate the results from the first two experiments into a set of patient tests that can be used clinically to predict the optimal signal processing for an individual. Listener response to hearing aid signal processing will include aided speech intelligibility, aided sound quality, and/or perceived reduction of hearing handicap. Patient factors will include the audiogram, spectral-temporal processing abilities, and cognitive abilities.

Public Health Relevance

Hearing loss is one of our most pervasive health problems but the only treatment option for most of those with hearing loss is a hearing aid. To improve hearing aid satisfaction and benefit and avoid distorting important speech cues, we need to choose appropriate processing parameters for each individual. The focus of this project is to determine hearing aid settings that will provide the best possible speech recognition for each individual under a variety of listening conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC012289-01
Application #
8268718
Study Section
Special Emphasis Panel (ZRG1-IFCN-M (51))
Program Officer
Donahue, Amy
Project Start
2012-04-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
1
Fiscal Year
2012
Total Cost
$290,252
Indirect Cost
$58,129
Name
Northwestern University at Chicago
Department
Other Health Professions
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Kates, James M; Arehart, Kathryn H; Anderson, Melinda C et al. (2018) Using Objective Metrics to Measure Hearing Aid Performance. Ear Hear 39:1165-1175
Reinhart, Paul N; Souza, Pamela E (2018) Listener Factors Associated with Individual Susceptibility to Reverberation. J Am Acad Audiol 29:73-82
Anderson, Melinda; Rallapalli, Varsha; Schoof, Tim et al. (2018) The use of self-report measures to examine changes in perception in response to fittings using different signal processing parameters. Int J Audiol 57:809-815
Anderson, Melinda C; Arehart, Kathryn H; Souza, Pamela E (2018) Survey of Current Practice in the Fitting and Fine-Tuning of Common Signal-Processing Features in Hearing Aids for Adults. J Am Acad Audiol 29:118-124
Shen, Jing; Souza, Pamela E (2017) Do Older Listeners With Hearing Loss Benefit From Dynamic Pitch for Speech Recognition in Noise? Am J Audiol 26:462-466
Shen, Jing; Souza, Pamela E (2017) The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise. J Speech Lang Hear Res 60:2725-2739
Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J (2017) Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury. J Am Acad Audiol 28:325-339
Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N (2017) Response to Comment: RE: ) Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics, Ear Hear 37, 137-143. Ear Hear 38:644-645
Ward, Kristina M; Shen, Jing; Souza, Pamela E et al. (2017) Age-Related Differences in Listening Effort During Degraded Speech Recognition. Ear Hear 38:74-84
Reinhart, Paul N; Souza, Pamela E (2016) Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory. J Speech Lang Hear Res 59:1543-1554

Showing the most recent 10 out of 28 publications