The long-term goal of this proposal is to define specific molecular mechanisms of TGF-beta3-induced palatal fusion. During development TGF-beta3 expression is both spatially and temporally restricted. Exceptionally high expression levels have been found specifically in prefusion palatal epithelium. Concordant with this surge of TGF-beta3 expression, homozygous TGF-beta3-deficient mice suffer from bilateral clefting of the secondary palate. It has been suggested that during epithelial fusion, TGF-beta3 triggers epithelio-mesenchymal transdifferentiation and associated degradation of the basement membrane, processes necessary for successful palatal fusion. The combined data, including expression pattern and level of TGF-beta3 in prefusion palatal shelves, complete penetrance of cleft palate in TGF- beta3 null mutant mice and failure of TGF-beta3-deficient medial edge epithelial cells to transdifferentiate from epithelial cells to mesenchymal cells lead to the formulation or the following hypotheses: TGF beta3 is a master switch, capable of initiating a cascade of molecular events leading to successful midline epithelial fusion during palatogenesis. To test this hypothesis we will utilize TGF-beta3 null mutant mice to investigate TGF-beta3 signaling and downstream biological responses. The proposed studies have been organized to three different Aims: expression and function of TGF-beta type I receptors and their down- stream signaling molecules, Smads in Aim 1, role of epithelial mastergenes and key molecular switches in epithelio-mesenchymal transdifferentiation during epithelial fusion in Aim2, and function of metalloprotemases and their inhibitors during associated degradation of the basement membrane in Aim 3. These studies will eventually improve our understanding of the pathogenetic mechanisms that lead to formation of cleft palate, one of the most common congenital birth defects in human.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE013085-02
Application #
6489658
Study Section
Oral Biology and Medicine Subcommittee 1 (OBM)
Program Officer
Small, Rochelle K
Project Start
2001-02-01
Project End
2004-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
2
Fiscal Year
2002
Total Cost
$260,925
Indirect Cost
Name
Children's Hospital of Los Angeles
Department
Type
DUNS #
094878337
City
Los Angeles
State
CA
Country
United States
Zip Code
90027
Pan, Haichun; Zhang, Honghao; Abraham, Ponnu et al. (2017) BmpR1A is a major type 1 BMP receptor for BMP-Smad signaling during skull development. Dev Biol 429:260-270
Rajderkar, Sudha; Panaretos, Christopher; Kaartinen, Vesa (2017) Trim33 regulates early maturation of mouse embryoid bodies in vitro. Biochem Biophys Rep 12:185-192
Lane, Jamie; Yumoto, Kenji; Azhar, Mohamad et al. (2015) Tak1, Smad4 and Trim33 redundantly mediate TGF-?3 signaling during palate development. Dev Biol 398:231-41
Agarwal, Shailesh; Loder, Shawn J; Brownley, Cameron et al. (2015) BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev Biol 400:202-9
Zhang, Honghao; Takeda, Haruko; Tsuji, Takehito et al. (2015) Generation of Evc2/Limbin global and conditional KO mice and its roles during mineralized tissue formation. Genesis 53:612-626
Lane, Jamie; Kaartinen, Vesa (2014) Signaling networks in palate development. Wiley Interdiscip Rev Syst Biol Med 6:271-8
Gay, Leslie; Karfilis, Kate V; Miller, Michael R et al. (2014) Applying thiouracil tagging to mouse transcriptome analysis. Nat Protoc 9:410-20
Lane, Jamie; Yumoto, Kenji; Pisano, Justin et al. (2014) Control elements targeting Tgfb3 expression to the palatal epithelium are located intergenically and in introns of the upstream Ift43 gene. Front Physiol 5:258
Bogenmann, Emil; Thomas, Penny S; Li, Qianfeng et al. (2011) Generation of mice with a conditional allele for the p75(NTR) neurotrophin receptor gene. Genesis 49:862-9
Kamiya, Nobuhiro; Kaartinen, Vesa M; Mishina, Yuji (2011) Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem Biophys Res Commun 414:326-30

Showing the most recent 10 out of 34 publications