Complications of diabetes result in part from elevated serum glucose levels. This leads to non-enzymatic glycation of proteins to form advanced glycation end products (AGE's). AGE's play a significant role in many complications of diabetes. Osteopenia and low mineral density and weak bones is a complication of Type 1 diabetes and is known as """"""""diabetic bone disease"""""""". Surprisingly little is known regarding the role of AGE's in modulating bone healing, bone formation, and osteoblast function. For example, the presence and activity of the receptor for advanced glycation end products (RAGE) has not been reported in osteoblasts. The principal hypothesis of the proposed research is that AGE's inhibit bone healing and formation by binding and activating RAGE in osteoblasts. We propose that this results in NFKB activation and transcriptional repression and down-regulation of key osteoblast growth factors and extracellular matrix genes.
Aim 1 will measure in vivo the expression of selected growth factors and extracellular matrix products (BMP-1, BMP- 2, BMP-4, and type I collagen) in healing calvaria defects made in diabetic and non-diabetic mice. Diabetes will be induced by the multiple low dose streptozotocin protocol in Balb/c mice; selected studies will be performed in the nonchemically-induced murine diabetic model (NOD strain). The degree of inhibition of bone healing in diabetic animals and expression patterns of RAGE will be determined by quantitative histomorphometric and quantitative immunohistochemical measurements. Studies will directly determine the role of AGE's in diminished diabetic bone formation by local application of AGE's to calvaria defects in non-diabetic mice. The degree to which this mimics diabetic bone will be determined by measuring inhibition of healing and regulation of the same growth factors and extracellular matrix products.
Aim 2 will determine in vitro in primary rat osteoblast cell cultures that AGE's inhibit production of osteoblast growth factors and type I collagen via RAGE activated NF-KB. RAGE function blocking antibody studies will identify the AGE/RAGE-dependent NF-KB activation mechanism in the regulation of the specified osteoblast genes. The role of NF-KB activation in down-regulating target osteoblast genes will be directly determined by transfection with the super-repressor 32A/36A IKB-alpha, a potent and specific inhibitor of NF-KB activation. These studies will identify a new mechanism that contributes to diabetic bone disease; and should lead to the identification of new therapeutic treatment targets for this increasingly prevalent clinical condition.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
1R01DE014066-01A2
Application #
6572973
Study Section
Special Emphasis Panel (ZRG1-OBM-2 (01))
Program Officer
Lumelsky, Nadya L
Project Start
2003-06-01
Project End
2008-05-31
Budget Start
2003-06-01
Budget End
2004-05-31
Support Year
1
Fiscal Year
2003
Total Cost
$268,494
Indirect Cost
Name
Boston University
Department
Dentistry
Type
Schools of Dentistry
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Alsulaiman, Mona; Bais, Manish V; Trackman, Philip C (2016) Lysyl oxidase propeptide stimulates osteoblast and osteoclast differentiation and enhances PC3 and DU145 prostate cancer cell effects on bone in vivo. J Cell Commun Signal 10:17-31
Trackman, Philip C (2016) Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 52-54:7-18
Alsofi, Loai; Daley, Eileen; Hornstra, Ian et al. (2016) Sex-Linked Skeletal Phenotype of Lysyl Oxidase Like-1 Mutant Mice. Calcif Tissue Int 98:172-85
de Santana, Ronaldo Barcellos; Trackman, Phillip C (2015) Effect of targeted delivery of bone morphogenetic protein-2 on bone formation in type 1 diabetes. Int J Oral Maxillofac Implants 30:707-14
Bais, M V; Ozdener, G B; Sonenshein, G E et al. (2015) Effects of tumor-suppressor lysyl oxidase propeptide on prostate cancer xenograft growth and its direct interactions with DNA repair pathways. Oncogene 34:1928-37
Khosravi, Roozbeh; Sodek, Katharine L; Faibish, Michael et al. (2014) Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone 58:33-41
Khosravi, Roozbeh; Sodek, Katharine L; Xu, Wan-Peng et al. (2014) A novel function for lysyl oxidase in pluripotent mesenchymal cell proliferation and relevance to inflammation-associated osteopenia. PLoS One 9:e100669
Beerlage, Christiane; Greb, Jessica; Kretschmer, Dorothee et al. (2013) Hypoxia-inducible factor 1-regulated lysyl oxidase is involved in Staphylococcus aureus abscess formation. Infect Immun 81:2562-73
Bais, Manish V; Nugent, Matthew A; Stephens, Danielle N et al. (2012) Recombinant lysyl oxidase propeptide protein inhibits growth and promotes apoptosis of pre-existing murine breast cancer xenografts. PLoS One 7:e31188
Eliades, Alexia; Papadantonakis, Nikolaos; Bhupatiraju, Ajoy et al. (2011) Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J Biol Chem 286:27630-8

Showing the most recent 10 out of 30 publications