The innate immune system, an evolutionarily ancient response, is believed to be present and functional at birth or within the first few days of life. However, the role commensal bacteria play in """"""""turning on"""""""" innate immunity; i.e., regulating it's response, and at what ontogenic point in life this begins to occur is not known. Recent findings in our laboratory are leading us to conjecture that ontogeny of the oral innate immune response may be linked to colonizing organisms in the oral cavity. We recently discovered that Fusobacterium nucleatum, a ubiquitous Gram-negative bacterium of the human oral cavity, induces expression of epithelial cell derived human beta defensin -2 (hBD-2) and hBD-3 in normal oral epithelial cells (NHOECs), resulting in protection against invasion of Porphyromonas gingivalis, a major etiologic agent in periodontal destruction. Extensive biochemical and molecular biological work has identified an F. nucleatum outer membrane protein that induces these antimicrobial and immunoregulatory peptides. We refer to this protein as FAD-I for Fusobacterial associated defensin inducer. Additionally, preliminary cross-sectional data indicates that salivary hBD levels are significantly lower in infancy than in older age groups. We suspect that an age-related association with hBD induction, and possibly other epithelial cell derived antimicrobial peptides (AMPs), is correlated with colonization and persistence of FAD-I expressing F. nucleatum strains. Clearly we need to know more about this dynamic by (1) conducting epidemiologic studies to investigate AMP levels across the age spectrum to establish overall, age stratified and FAD-I associated distributions; (2) determining the inductive properties of FAD-I on AMPs and their subsequent contribution to NHOEC protection and (3) further characterizing the functionality of FAD-I by taking molecular and biochemical approaches to ascertain preliminary structure-function relationships in hBD induction. By better understanding the ontogenic spectrum of an individual's innate immune AMP profile, we may be able to identify individuals who are predisposed to mucosal infections. By uncovering potential beneficial commensal strategies with the host, as FAD-I appears to be, we may one day be able to exploit these strategies in protecting susceptible mucosal sites. FAD-I is a new discovery that warrants investigation into the possibility that it or its derivatives may provide a new direction into drug design that could be exploited locally to bolster Mother Nature's own defenses. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE018276-02
Application #
7415215
Study Section
Special Emphasis Panel (ZDE1-YL (20))
Program Officer
Rodriguez-Chavez, Isaac R
Project Start
2007-05-01
Project End
2011-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
2
Fiscal Year
2008
Total Cost
$324,702
Indirect Cost
Name
Case Western Reserve University
Department
Dentistry
Type
Schools of Dentistry
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Miller, D P; Wang, Q; Weinberg, A et al. (2018) Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol 33:364-377
Wang, QuanQiu; McCormick, Thomas S; Ward, Nicole L et al. (2017) Combining mechanism-based prediction with patient-based profiling for psoriasis metabolomics biomarker discovery. AMIA Annu Symp Proc 2017:1734-1743
Guo, Lihong; Shokeen, Bhumika; He, Xuesong et al. (2017) Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Mol Oral Microbiol 32:355-364
Shi, Baochen; Wu, Tingxi; McLean, Jeffrey et al. (2016) The Denture-Associated Oral Microbiome in Health and Stomatitis. mSphere 1:
Bhattacharyya, Sanghamitra; Ghosh, Santosh K; Shokeen, Bhumika et al. (2016) FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun 84:1446-1456
Ghosh, Santosh K; McCormick, Thomas S; Eapen, Betty L et al. (2013) Comparison of epigenetic profiles of human oral epithelial cells from HIV-positive (on HAART) and HIV-negative subjects. Epigenetics 8:703-9
Meisch, Jeffrey P; Nishimura, Michiko; Vogel, Ryan M et al. (2013) Human ?-defensin 3 peptide is increased and redistributed in Crohn's ileitis. Inflamm Bowel Dis 19:942-53
Tebit, Denis M; Ndembi, Nicaise; Weinberg, Aaron et al. (2012) Mucosal transmission of human immunodeficiency virus. Curr HIV Res 10:3-8
Ghosh, Santosh K; Gupta, Sanhita; Jiang, Bin et al. (2011) Fusobacterium nucleatum and human beta-defensins modulate the release of antimicrobial chemokine CCL20/macrophage inflammatory protein 3?. Infect Immun 79:4578-87
McCormick, Thomas S; Weinberg, Aaron (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000 54:195-206

Showing the most recent 10 out of 12 publications