Understanding the healthy and the diseased brain requires knowledge of the biochemistry occurring within the neurons and supporting cells that make up our brain. It is well known that individual cells in the nervous system have distinct protein complements, but the consequences of this heterogeneity on the cellular metabolome are much less well understood. While neurotransmitters used in a network vary neuron-by-neuron, what are the cell-to-cell variations of the metabolome in the mammalian nervous system? For most metabolites, the answer is unknown. Using a suite of analytical technologies based on small-volume sampling, capillary electrophoresis with laser- induced fluorescence detection, single cell mass spectrometry, and capillary separations coupled to Fourier-transform mass spectrometry, the neurometabolome of a network of dorsal root ganglion (DRG) sensory neurons will be studied with unmatched chemical detail. DRG neurons are involved in the mechanisms of pain - one of most devastating side effects of many disorders. The neurotransmitters and metabolites in individual neurons and their functional neuronal compartments such as dendrites, axons, and cell bodies, will be characterized. The first stage of this work is to compile information on the metabolome of the DRG neurons, and examine this for unusual molecules. Next, using the DRG and its neurometabolome as the model, several specific questions are addressed: (1) Does the neurometabolome of functionally distinct neuronal compartments differ? (2) What subset of the small-molecule complement is released upon electrical or chemical stimulation, and thus may participate in cell-to-cell communication? (3) How does inflammation- induced pain change the neurometabolome of the DRG neurons? These efforts fit within the scope of the metabolomics roadmap initiative by developing innovative methodologies to investigate neurotransmitter and other small molecule compartmentalization on the function of a model sensory neuron network. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE018866-02
Application #
7483119
Study Section
Special Emphasis Panel (ZRG1-BST-W (52))
Program Officer
Kusiak, John W
Project Start
2007-08-15
Project End
2012-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
2
Fiscal Year
2008
Total Cost
$324,851
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Knolhoff, Ann M; Nautiyal, Katherine M; Nemes, Peter et al. (2013) Combining small-volume metabolomic and transcriptomic approaches for assessing brain chemistry. Anal Chem 85:3136-43
Nemes, Peter; Rubakhin, Stanislav S; Aerts, Jordan T et al. (2013) Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nat Protoc 8:783-99
Lee, Ji Eun; Zamdborg, Leonid; Southey, Bruce R et al. (2013) Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 12:585-93
Nemes, Peter; Rubakhin, Stanislav S; Aerts, Jordan T et al. (2013) Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nat Protoc 8:783-99
Nemes, Peter; Knolhoff, Ann M; Rubakhin, Stanislav S et al. (2012) Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. ACS Chem Neurosci 3:782-92
Cecala, Christine; Sweedler, Jonathan V (2012) Sampling techniques for single-cell electrophoresis. Analyst 137:2922-9
Nautiyal, Katherine M; Dailey, Christopher A; Jahn, Jaquelyn L et al. (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36:2347-59
Cecala, Christine; Rubakhin, Stanislav S; Mitchell, Jennifer W et al. (2012) A hyphenated optical trap capillary electrophoresis laser induced native fluorescence system for single-cell chemical analysis. Analyst 137:2965-72
Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F (2011) Small molecule analysis and imaging of fatty acids in the zebra finch song system using time-of-flight-secondary ion mass spectrometry. J Neurochem 118:499-511
Rubakhin, Stanislav S; Romanova, Elena V; Nemes, Peter et al. (2011) Profiling metabolites and peptides in single cells. Nat Methods 8:S20-9

Showing the most recent 10 out of 23 publications