The program is a continuation of the study on the neurophysiology of the enteric nervous system and of the investigation of the mechanisms by which the intrinsic nervous system of the gut participates in the control and integration of gastrointestinal function. The objectives of the study are: (1) To compare the electrical behavior of enteric neurons with the behavior of the effector systems in the specialized regions along the alimentary canal. (2) To map the interneuronal connectivity that mediates the various reflex responses that occur within the gut. (3) To determine the effects of pharmacological agents, ischemia and intrinsic humoral factors circulating in the blood on electrical behavior of enteric neurons. (4) To determine if the internal environment of enteric ganglia is regulated by a selectively permeable barrier. (5) To determine the metabolic properties of the enteric nervous system and to obtain an explanation for the low susceptibility of enteric neurons to hypoxia. (6) To compare effector function in the large intestine of mice with herditary aganglionic megacolon with effector function in mice with normal innervation of the bowel. (7) To elucidate the etiology and pathophysiology of Hirschsprung's disease and related disorders that are associated with malformation and malfunction of the enteric nervous system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK037238-03
Application #
3236037
Study Section
(SSS)
Project Start
1985-09-01
Project End
1988-04-30
Budget Start
1987-05-01
Budget End
1988-04-30
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Ohio State University
Department
Type
Schools of Medicine
DUNS #
098987217
City
Columbus
State
OH
Country
United States
Zip Code
43210
Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei et al. (2015) ?-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. Am J Physiol Gastrointest Liver Physiol 308:G955-63
Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei et al. (2014) Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol 307:G719-31
Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun et al. (2014) Dietary glutamate: interactions with the enteric nervous system. J Neurogastroenterol Motil 20:41-53
Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei et al. (2013) Mast cell expression of the serotonin1A receptor in guinea pig and human intestine. Am J Physiol Gastrointest Liver Physiol 304:G855-63
Fei, G; Fang, X; Wang, G D et al. (2013) Neurogenic mucosal bicarbonate secretion in guinea pig duodenum. Br J Pharmacol 168:880-90
Wood, Jackie D (2013) Taming the irritable bowel. Curr Pharm Des 19:142-56
Gao, Na; Luo, Jialie; Uray, Karen et al. (2012) CaMKII is essential for the function of the enteric nervous system. PLoS One 7:e44426
Wood, J D (2012) Nonruminant Nutrition Symposium: Neurogastroenterology and food allergies. J Anim Sci 90:1213-23
Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia et al. (2012) Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol Gastrointest Liver Physiol 302:G352-8
Sun, Xiaohong; Wang, Xiyu; Wang, Guo-Du et al. (2011) Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine. Dig Dis Sci 56:330-8

Showing the most recent 10 out of 67 publications