The cells of the terminal end bud (TEB) are the most proliferative and invasive cells found during postnatal development in mammals. These cells, through their enormous proliferative capacity, drive the development of the entire mammary ductal system, serve as a source of mammary progenitor cells, and are the single most important target for carcinogens within the mammary gland. The ability of endocrine-, paracrine- and extracellular matrix-derived signals to harness this enormous regenerative potential and direct it into a highly ordered developmental pattern makes the TEB both an important and very fascinating system with which to study the endocrine regulation of intracellular signaling. Our analysis of grafted mammary tissue from a knockout mouse model has demonstrated that a targeted inactivating mutation of the gene for the IGF-I receptor (lgf1r) dramatically reduces mammary ductal development and decreases TEB cell proliferation(1). This proliferative defect, however, is partial restored by early pregnancy. In breast cancer cell models the IGF-I receptor as well as a handful of other hormone receptors signal through insulin receptor substrate (IRS) proteins, and two serine threonine kinases, ERK and Akt. The overall hypothesis addressed in this proposal is that IGF-I receptor stimulates TEB cell proliferation through insulin responsive substrate (IRS)-dependent activation of ERK and Akt during virgin ductal development and that pregnancy or the ovarian steroid hormones estradiol (E2) and progesterone (P) increase the sensitivity of IRS-dependent signaling pathways to insulin receptor-dependent activation in Igf1r-/- TEB. Through the use confocal microscopy with recently developed antibodies to detect cell signaling in-situ, we will learn how signaling pathways are regulated in TEBs and what the significance of these pathways is to processes important to both normal mammary gland function and breast cancer.
The specific aims are; 1) determine if estrus cycle, ovarectomy, early pregnancy, or exogenous E2+P alters IGF-I-, or insulin-induced phosphorylation of IRS-1, -2, ERK and Akt in mammary glands of normal mice, 2) determine if IGF-IR or IR dependent activation of ERK, and Akt is attenuated in the TEB of lgf1r -/- grafts and if early pregnancy or exogenous E2+P can restore this activation, and 3) determine if overexpression of IRS-1 or IRS-2 within the mammary epithelium restores development of Igf1r-/- mammary epithelium and enhances insulin-dependent posphorylation of ERK and Akt.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK052197-08
Application #
6845972
Study Section
Reproductive Endocrinology Study Section (REN)
Program Officer
Sato, Sheryl M
Project Start
1997-01-24
Project End
2007-02-28
Budget Start
2005-03-01
Budget End
2006-02-28
Support Year
8
Fiscal Year
2005
Total Cost
$263,375
Indirect Cost
Name
Baylor College of Medicine
Department
Pediatrics
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Dearth, Robert K; Cui, Xiaojiang; Kim, Hyun-Jung et al. (2006) Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 26:9302-14
Carboni, Joan M; Lee, Adrian V; Hadsell, Darryl L et al. (2005) Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65:3781-7
Lee, Adrian V; Schiff, Rachel; Cui, Xiaojiang et al. (2003) New mechanisms of signal transduction inhibitor action: receptor tyrosine kinase down-regulation and blockade of signal transactivation. Clin Cancer Res 9:516S-23S
Chakravarty, Geetika; Hadsell, Darryl; Buitrago, William et al. (2003) p190-B RhoGAP regulates mammary ductal morphogenesis. Mol Endocrinol 17:1054-65