The PI proposes to identify the functional, structural and regulatory properties of GRP94 which define it as a (poly) peptide binding protein. GRP94, the endoplasmic reticulum (ER) homolog of hsp90, is an abundant resident molecular chaperone of the ER lumen. In addition to its chaperone role, studies in animal carcinogenesis models have established that GRP94 can function as a tumor-specific vaccine. Vaccine activity is know to require the uptake of GRP94-peptide complexes by antigen-presenting cells, and the transfer of GRP94- bound peptides to nascent MHC class I molecules in the ER. The molecular signals governing the finding the release of the GRP94 associated peptides are currently unknown, but are certain to prove significant to the identification of the molecular mechanism of GRP94 function and to the development of GRP94 as an immunotherapy agent. To achieve this goal, the PI proposes 1) to define the kinetics and regulation of (poly) peptide binding to GRP94. To this end, the hypothesis that peptide binding by GRP94 is regulated by ribonucleotides will be tested and assays will be developed to identify potential regulatory contributions of resident ER integral and lumenal proteins to the GRP94 peptide binding and release reactions. 2) To perform structural analyses of GRP94 bound peptides and identify peptide binding motifs. Having developed procedures for the purification of native GRP94, a large scale, mass spectrometry based, bound peptide sequencing study will be initiated to test the hypothesis that GRP94 recognizes specific peptide structural motifs. 3) To identify the GRP94 peptide binding site(s) through techniques including chemical and photo-crosslinking, proteolytic domain structure studies, and in vitro binding studies with purified expression constructs and isolated structural domains. 4) To determine the role of GRP94 dimerization in the regulation of peptide binding activity and in vivo function. To test whether dimerization is necessary for function, mutations in the assembly domain that block dimerization will be assessed by in vitro studies of peptide binding and in vivo studies of protein assembly and secretion.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK053058-02
Application #
2749636
Study Section
Molecular Cytology Study Section (CTY)
Program Officer
Haft, Carol R
Project Start
1997-09-01
Project End
2001-07-31
Budget Start
1998-08-01
Budget End
1999-07-31
Support Year
2
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Duke University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
071723621
City
Durham
State
NC
Country
United States
Zip Code
27705
Duerfeldt, Adam S; Peterson, Laura B; Maynard, Jason C et al. (2012) Development of a Grp94 inhibitor. J Am Chem Soc 134:9796-804
Maynard, Jason C; Pham, Trang; Zheng, Tianli et al. (2010) Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol 339:295-306
Chu, Feixia; Maynard, Jason C; Chiosis, Gabriela et al. (2006) Identification of novel quaternary domain interactions in the Hsp90 chaperone, GRP94. Protein Sci 15:1260-9
Yewdell, Jonathan W; Nicchitta, Christopher V (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 27:368-73
Chiosis, Gabriela; Aguirre, Julia; Nicchitta, Christopher V (2006) Synthesis of Hsp90 dimerization modulators. Bioorg Med Chem Lett 16:3529-32
Nicchitta, Christopher V; Lerner, Rachel S; Stephens, Samuel B et al. (2005) Pathways for compartmentalizing protein synthesis in eukaryotic cells: the template-partitioning model. Biochem Cell Biol 83:687-95
Reed, Robyn C; Berwin, Brent; Baker, Jeffrey P et al. (2003) GRP94/gp96 elicits ERK activation in murine macrophages. A role for endotoxin contamination in NF-kappa B activation and nitric oxide production. J Biol Chem 278:31853-60
Berwin, Brent; Hart, Justin P; Rice, Stuart et al. (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 22:6127-36
Baker-LePain, Julie C; Sarzotti, Marcella; Fields, Timothy A et al. (2002) GRP94 (gp96) and GRP94 N-terminal geldanamycin binding domain elicit tissue nonrestricted tumor suppression. J Exp Med 196:1447-59
Berwin, B; Rosser, M F N; Brinker, K G et al. (2002) Transfer of GRP94(Gp96)-associated peptides onto endosomal MHC class I molecules. Traffic 3:358-66

Showing the most recent 10 out of 19 publications