Crohn's disease (CD) is a multifactorial disease thought to be caused by an abnormal inflammatory response directed against enteric bacteria in genetically susceptible individuals. More than 70 genes have been shown to regulate the susceptibility to CD. Genetic variation in the Nod2 gene is, of all genetic loci identified, the mot strongly associated with risk for developing CD. Nod2 is an intracellular pattern recognition receptor that is activated by muramyl dipeptide (MDP), a conserved motif in peptidoglycan, and upon activation induces inflammatory and anti-microbial molecules. Notably, CD-associated Nod2 variants display impaired recognition of MDP. The loss-of-function of Nod2 mutations and the requirement of homozygocity for Nod2 mutations to confer CD susceptibility suggest that defective intestinal immunity promotes disease. Nod2 mutations are associated with ileal, but not colonic, disease suggesting that Nod2 plays a critical role in the regulation of ileal immunity Nod2 is highly expressed in Paneth cells, a specialized cell population located in the crypts that produces anti-microbial peptides. In addition to their host defense role, Paneth cells regulate the intestinal microbiota through the luminal release of anti-microbial peptides. It has been suggested that in the presence of loss-of-function CD-associated Nod2 mutations, specific pathogenic bacteria and/or commensals with potential to induce pathology, or pathosymbionts, accumulate leading to inappropriate inflammation. However, the ability of CD-associated Nod2 mutations to regulate host defense to enteric bacteria or commensals remains to be investigated. Using mice that harbor the common CD-associated Nod22939iCstop mutation, we propose to test the hypotheses including that Nod22939iCstop impairs Paneth cell function and the clearance of pathogenic bacteria and/or pathobionts leading to inappropriate increase of intestinal inflammation. In addition, we propose to use mutant mice harboring floxed Nod2 alleles to determine the cell- intrinsic role of Nod2 in the regulation of inflammatory responses and host defense against enteric pathogens. The proposed studies should lead to novel insight into the role of Nod2 and CD-associated Nod2 mutations in enteric inflammation and host defense.

Public Health Relevance

Crohn's disease (CD) is a common and debilitating inflammatory disease of the gastrointestinal tract caused by an inappropriate mucosal immune response to enteric bacteria in genetically susceptible individuals. A major CD susceptibility gene is Nod2. Three major Nod2 mutations, L1007fsinsC, R702W and G908R have been found to be associated with CD. However, the mechanisms by which mutant Nod2 confer increased susceptibility to CD remain poorly understood. In this grant application, we proposed studies to understand the role of CD-associated mutant and wild-type Nod2 in intestinal immunity and inflammatory disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK061707-13
Application #
8885800
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Greenwel, Patricia
Project Start
2002-04-08
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
13
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pathology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Liu, Ta-Chiang; Kern, Justin T; VanDussen, Kelli L et al. (2018) Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J Clin Invest 128:5110-5122
Núñez, Gabriel; Sakamoto, Kei; Soares, Miguel P (2018) Innate Nutritional Immunity. J Immunol 201:11-18
Werner, Jessica L; Escolero, Sylvia G; Hewlett, Jeff T et al. (2017) Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2. Am J Respir Cell Mol Biol 56:121-130
Hayakawa, Kyoko; Formica, Anthony M; Zhou, Yan et al. (2017) NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome. J Exp Med 214:3067-3083
Kim, Donghyun; Zeng, Melody Y; Núñez, Gabriel (2017) The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49:e339
Kim, Donghyun; Seo, Sang-Uk; Zeng, Melody Y et al. (2017) Mesenchymal Cell-Specific MyD88 Signaling Promotes Systemic Dissemination of Salmonella Typhimurium via Inflammatory Monocytes. J Immunol 199:1362-1371
Pickard, Joseph M; Zeng, Melody Y; Caruso, Roberta et al. (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279:70-89
Caruso, Roberta; Núñez, Gabriel (2016) Innate Immunity: ER Stress Recruits NOD1 and NOD2 for Delivery of Inflammation. Curr Biol 26:R508-R511
Kim, Donghyun; Kim, Yun-Gi; Seo, Sang-Uk et al. (2016) Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 22:524-30
Jeong, Yu-Jin; Kang, Min-Jung; Lee, Sang-Jin et al. (2014) Nod2 and Rip2 contribute to innate immune responses in mouse neutrophils. Immunology 143:269-76

Showing the most recent 10 out of 64 publications