Bcl-2 protects cells from apoptosis initiated by a variety of stimuli including loss of cell adhesion. Mice deficient in bcl-2 (bcl-2 -/-) develop renal hypoplastic/cystic dysplasia, a condition that leads to significant morbidity and mortality in children. The precise mechanism of action of bcl-2 has not been elucidated. Our hypothesis is that early embryonic expression of bcl-2 facilitates morphogenesis by supporting survival of precursor cells allowing them to be less adherent and migratory without the threat of apoptosis. Bcl-2 may facilitate survival of precursor cells and/or play a more """"""""active"""""""" role during morphogenesis by interacting with other proteins such as paxillin. Our data demonstrate that paxillin interacts with the bcl-2 BH4 domain in embryonic kidneys. The bcl-2 BH4 domain is sufficient and necessary for its cell survival activity. Bcl-2 with the BH4 domain deleted lacks the survival function but still avidly binds to other bcl-2 family members. We will determine the domain(s) of paxillin that interact with bcl-2 and their influence on cell adhesive mechanisms during kidney development. Our preliminary data indicate that ureteric bud (UB) branching morphogenesis is adversely affected in bcl-2 -/- mice. Metanephroi from bcl-2 -/- mice undergo decreased UB branching in organ culture and bcl-2 -/- UB cells fail to undergo branching morphogenesis in collagen gels. Furthermore, wild-type embryonic kidneys incubated with bcl-2 BH4 domain peptide exhibit defective UB branching morphogenesis. We will investigate the role bcl-2 plays during UB branching and whether aberrant UB branching contributes to excessive apoptosis of the metanephric blastema in bcl-2 -/- mice. We will determine whether the abnormalities of renal development in bcl-2 -/- mice is primarily or exclusively the result of the absence of bcl-2 in the UB or metanephric mesenchyme. Therefore, understanding the normal functions of bcl-2 during nephrogenesis and the consequences of its interaction with paxillin will give us important insight into kidney morphogenesis and pathogenesis. ? ? ?
Showing the most recent 10 out of 20 publications