The current treatment of patients with inherited fatty acid oxidation defects (FOD) involves providing most of the dietary fat as medium even-chain triglycerides (mostly trioctanoin) for long-chain disorders or simply dietary fat restriction for medium- and short chain disorders. This treatment does not prevent, in many cases, the progressive deterioration of cardiac, muscular, and/or retinal function. An initial clinical trial has shown that replacing trioctanoin in the diet by triheptanoin, a medium odd-chain triglyceride, leads to a rapid improvement of the patients'clinical condition and quality of life. We hypothesize that heptanoate, and the C5-ketone bodies derived from its initial hepatic metabolism, exert their beneficial effects by (i) providing propionyI-CoA, an anaplerotic substrate for the citric acid cycle (CAC), and (ii) compensating for partial CAC blockade when the flux through one or more CAC enzymes is restricted. We also hypothesize that odd-chain compounds such as tripentanoin or esters of C5-ketone bodies could be useful in the treatment of medium-chain FOD. Lastly, we hypothesize that a trimer of the C5-ketone body beta-hydroxypentanoate could be used as a slow enteral release form of beta-hydroxypentanoate. We propose a research program to be conducted in mice deficient in very long-chain acyI-CoA dehydrogenase (VLCAD, Aims 1 -4) and in mitochondrial trifunctional protein (MTP, Aim 5).
Our specific aims are: To characterize the metabolism and metabolic effects of the odd-chain compounds in vivo and in perfused organs (heart, muscle and liver). This will be achieved using compounds labeled with 13C in their propionyl or acetyl moiety, to evaluate anaplerosis and oxidation, respectively, by mass isotopomer analysis. 2. To test whether the odd-chain compounds (i) improve the survival of knock-out mice stressed by fasting or/and cold exposure, and (ii) improve energy metabolism and mechanical performance of the heart and muscle under stress-induced conditions (high workload or adrenergic stimulation). 3. To test new avenues for the acute treatment of FOD decompensation, i.e., parenteral preparations of odd-chain anaplerotic substrates (triheptanoin, tripentanoin, glycerol beta-ketopentanoate). To test the practicality of the cyclical trimer of beta-hydroxypentanoate (triolide) as a slow enteric release form of the propionyl-CoA precursor, suitable for nocturnal coverage of patients. To improve the survival of newborn MTP -/- mice.
Showing the most recent 10 out of 11 publications