Juvenile hemochromatosis is a severe variant of hemochromatosis that is caused by mutations in two genes which give indistinguishable phenotypes. One gene encodes hepcidin (HAMP, 19q13.1), a peptide synthesized by the liver in response to inflammation and iron overload. The second gene has recently been identified as hemojuvelin (HJV, 1q21). Although the function of HJV is unknown, hepcidin levels are depressed in persons with HJV mutations, indicating that HJV may be a hepcidin modulator. HJV is also a member of the RGM family of proteins originally described by our group and others as neural adhesion molecules. We present preliminary studies in vitro in liver cells that 1) HJV can induce BMP but not TGF-beta signals, 2) HJV signaling can be blocked by Noggin, a well-known BMP inhibitor, 3) HJV can bind directly to radiolabeled BMP-2 ligand, 4) HJV signals via the BMP type I receptors, ALK3 and ALK6, 5) HJV signals via the R-Smad, Smad1, 6) an HJV mutant known to cause juvenile hemochromatosis has decreased BMP signaling ability, and 7) BMP can increase, while Noggin can decrease, hepcidin expression in liver cells. We believe that HJV is a novel BMP co-receptor whose BMP signaling ability is important in regulating iron metabolism. Loss of BMP signaling by mutations in HJV could lead to decreased BMP signaling in liver cells, which would cause decreased hepcidin expression, and would thus explain why persons with HJV mutations also have depressed hepcidin levels. We propose to: 1) Determine the molecular mechanism of HJV action in the BMP signaling pathway in liver cells in vitro, including characterizing the physical interaction of HJV with the known BMP receptors and determining the binding affinities of HJV for different BMP ligands;2) Study the role of key structural features of HJV on its function, including HJV's RGD motif, GPI anchor and its proteolytic cleavage site;3) Determine the role of HJV and BMP signaling in iron metabolism in vitro and in vivo in HJV knock-out mice. Knowledge gained regarding the mechanism of action of HJV would be important in furthering our understanding of BMP signaling and of iron metabolism, and could lead to novel treatments of disorders of iron metabolism such as hemochromatosis and anemias of chronic disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK071837-05
Application #
7651358
Study Section
Gastrointestinal Cell and Molecular Biology Study Section (GCMB)
Program Officer
Wright, Daniel G
Project Start
2005-08-01
Project End
2011-07-31
Budget Start
2009-08-01
Budget End
2011-07-31
Support Year
5
Fiscal Year
2009
Total Cost
$330,498
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Theurl, Igor; Hilgendorf, Ingo; Nairz, Manfred et al. (2016) On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med 22:945-51
Nai, Antonella; Rubio, Aude; Campanella, Alessandro et al. (2016) Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood 127:2327-36
Schaefer, Benedikt; Haschka, David; Finkenstedt, Armin et al. (2015) Impaired hepcidin expression in alpha-1-antitrypsin deficiency associated with iron overload and progressive liver disease. Hum Mol Genet 24:6254-63
Tesfay, Lia; Clausen, Kathryn A; Kim, Jin Woo et al. (2015) Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res 75:2254-63
Zhao, Yueshui; Xiao, Xiaoqiu; Frank, Stuart J et al. (2014) Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6, TNF-?, and IL-1?. Am J Physiol Endocrinol Metab 307:E186-98
Meynard, Delphine; Babitt, Jodie L; Lin, Herbert Y (2014) The liver: conductor of systemic iron balance. Blood 123:168-76
Babitt, Jodie L; Lin, Herbert Y (2014) BuMPing iron with modified heparins. Blood 123:1440-1
Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui et al. (2013) Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells. J Biol Chem 288:31528-39
Sun, Chia Chi; Vaja, Valentina; Chen, Shanzhuo et al. (2013) A hepcidin lowering agent mobilizes iron for incorporation into red blood cells in an adenine-induced kidney disease model of anemia in rats. Nephrol Dial Transplant 28:1733-43
Meynard, Delphine; Sun, Chia Chi; Wu, Qifang et al. (2013) Inflammation regulates TMPRSS6 expression via STAT5. PLoS One 8:e82127

Showing the most recent 10 out of 39 publications