Amyloid is associated with a diverse group of often fatal hereditary and sporadic protein misfolding disorders, characterized by the deposition of fibrils and heparan sulfate proteoglycan in vital organs and tissues. Although the most common manifestation is in patients with Alzheimer's disease, the incidence of peripheral (non-cerebral) amyloid diseases in the USA, is estimated to be ~ 5300 per yr which exceeds that for acute lymphocytic leukemia (~ 4,000 per yr). Treatment options for peripheral amyloidosis are limited and focus on reducing synthesis of the amyloidogenic protein e.g., with high dose chemotherapy and there are currently 31 new trials for treating AL, AA, and ATTR amyloidosis underway (clinicaltrials.gov). Unfortunately, there are no methods available in the USA to visualize response to these anti-amyloid therapies directly, nor to determine the extent and severity of amyloid deposits or the target organ in patients. This kind of information can be obtained by imaging, using an amyloid-specific radiotracer. There exists therefore an urgent need to identify tracers that target amyloid for whole body imaging that can be used for monitoring disease progression and response to therapy both within the clinic and as part of clinical trials.
The aim of this proposal is to target the amyloid biomarker heparan sulfate proteoglycan and test antibody-derived and peptide tracer molecules that bind specifically to this constituent of all known amyloid deposits. Our approach is based on the fact that all amyloid deposits contain heparan sulfate proteoglycan at levels as high as 250 5g per gram of diseased tissue. We have begun testing a panel of antibody-derived proteins (scFv) known to bind heparan sulfate, for their ability to bind heparan sulfate in amyloid deposits. We have shown that scFvs to hypersulfated heparin sulfate successfully imaged amyloid in vivo even though heparan sulfate was expressed in some normal tissues. Novel heparan sulfate-binding peptides will also be generated and tested. In vitro characterization of the amyloid-reactive scFv and peptides will be performed by surface plasmon resonance and ELISA to identify those scFv with equilibrium binding affinity of <1 5M - suitable for imaging in patients. Small animal SPECT, PET, and CT imaging will be used to compare the co-localization of the available and novel heparan sulfate- binding tracers and identify those with acceptable (3:1) target to background ratios. We will use an established murine model of systemic peripheral (AA) amyloidosis that recapitulates many aspects of human amyloid disease including the deposition of proteoglycans which enhances the probability that we will identify tracers for imaging amyloidosis that translate favorably into the clinic. Identifying and validating molecules that specifically bind heparan sulfate proteoglycan found in tissue amyloid will provide new reagents for the clinical evaluation of patients with this devastating disease.

Public Health Relevance

Peripheral amyloidosis is a protein-misfolding condition associated with type 2 diabetes, chronic inflammatory disorders such as tuberculosis and rheumatoid arthritis, as well as certain B-cell malignancies. Currently here are no methods available in the USA that can detect the extent of amyloid deposits in patients with peripheral amyloidosis, nor to monitor their progression, or document their removal in response to therapy. This kind of information can be obtained by imaging, using an amyloid-specific radiotracer. To this end, we aim to target the amyloid biomarker heparan sulfate proteoglycan and test antibody-derived and peptide tracer molecules that bind specifically to this constituent of all known amyloid deposits for the purpose of whole body imaging that can be used to monitor disease progression and response to therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK079984-04
Application #
8310224
Study Section
Special Emphasis Panel (ZRG1-MEDI-A (09))
Program Officer
Laughlin, Maren R
Project Start
2009-08-01
Project End
2013-09-04
Budget Start
2012-08-01
Budget End
2013-09-04
Support Year
4
Fiscal Year
2012
Total Cost
$435,627
Indirect Cost
$130,297
Name
University of Tennessee Health Science Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
941884009
City
Memphis
State
TN
Country
United States
Zip Code
38163
Martin, Emily B; Williams, Angela D; Heidel, R Eric et al. (2018) A functional assay to identify amyloidogenic light chains. Amyloid 25:93-100
Beierle, Shannon P; Foster, James S; Richey, Tina et al. (2017) A novel murine system for validating the specific targeting of peptides to light chain associated (AL) amyloid. Amyloid 24:74-75
Blancas-Mejía, Luis M; Martin, Emily B; Williams, Angela et al. (2017) Kinetic stability and sequence/structure studies of urine-derived Bence-Jones proteins from multiple myeloma and light chain amyloidosis patients. Biophys Chem 230:89-98
Martin, Emily B; Williams, Angela; Richey, Tina et al. (2017) Evaluation of the effect of D-amino acid incorporation into amyloid-reactive peptides. J Transl Med 15:247
Wall, Jonathan S; Williams, Angela; Stuckey, Alan et al. (2017) Probing the structural requirements of polybasic peptides for effective and specific amyloid reactivity. Amyloid 24:30-31
Lin, Yi; Marin-Argany, Marta; Dick, Christopher J et al. (2017) Mesenchymal stromal cells protect human cardiomyocytes from amyloid fibril damage. Cytotherapy 19:1426-1437
Foster, James S; Williams, Angela D; Macy, Sallie et al. (2017) A Peptide-Fc Opsonin with Pan-Amyloid Reactivity. Front Immunol 8:1082
Wall, Jonathan S; Foster, James S; Martin, Emily B et al. (2017) Pretargeting immunotherapy: a novel treatment approach for systemic amyloidosis. Pharm Pat Anal 6:215-223
Wall, Jonathan S; Williams, Angela; Foster, James S et al. (2017) A bifunctional peptide, ""peptope"", for pre-targeting antibody 7D8 to systemic amyloid deposits. Amyloid 24:22-23
Wall, Jonathan S; Williams, Angela; Richey, Tina et al. (2017) Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by ?-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants. Mol Imaging Biol 19:714-722

Showing the most recent 10 out of 31 publications