Diabetes, obesity, metabolic syndrome, and cardiovascular disease are major causes of morbidity and mortality in the USA and worldwide. In the United States, ~34% of adults age e 20 years harbor a set of metabolic risk factors that include abdominal obesity, insulin resistance, atherogenic dyslipidemia, a proinflammatory state, and elevated blood pressure. Substantial evidence exists supporting a genetic component in the etiology of these traits. Our overall goal is to identify genetic variants that are responsible for variability in metabolic traits and risk to the related diseases. In this proposal, we aim to detect both rare variants and regulatory variants to further understand the genes, mechanisms, and pathways that influence obesity, metabolic syndrome, and diabetes. Large population cohorts are needed to identify less common (.005 d MAF <.05) and rare (MAF <.005) genetic determinants, to dissect the genetic contributions to correlated traits, and to evaluate the relative effects of and interactions between genes, environment, and behavior. One of the largest single-site population-based cohorts in which to evaluate genetic determinants of metabolic traits, the METSIM cohort of 10,197 individuals was ascertained in Kuopio, Finland during 2005- 2010. Participants were subjected to extensive clinical exams including oral glucose tolerance tests, body composition analysis, and measurement of plasma biomarkers and metabolites, and behavioral and clinical diagnostic data were collected for diabetes, diabetes complications, and cardiovascular events. In the context of the METSIM study, we will sequence total genomic DNA from 1,000 individuals at >4X coverage and impute genetic variants into 9,197 additional METSIM individuals. We will test variants for association with up to 200 metabolic quantitative traits and follow up association results via imputing variants into >15,000 additional samples. Using subcutaneous adipose samples from a subset of 400 METSIM participants, we will identify allele-specific differences in adipocyte expression and test potentially causal metabolic disease variants for functional regulatory effects. In addition, we will assess evidence for interactions and causal relationships between metabolic traits. Through this work we expect to identify novel genetic determinants of metabolic traits, discover pathogenic regulatory variants, and determine multivariate genetic, regulatory, and environmental relationships that lead to diabetes, obesity, and the metabolic syndrome. Better understanding of these factors and mechanisms may lead to clearer characteristics of disease subgroups and more targeted diagnoses and treatments.

Public Health Relevance

Diabetes, obesity, and the metabolic syndrome are leading causes of morbidity and mortality worldwide. Traits related to these diseases have a strong inherited basis. The proposed work will identify novel variants that influence these traits and mechanisms by which DNA variants influence gene expression and disease. The results may lead to improved disease diagnosis and treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK093757-03
Application #
8518318
Study Section
Kidney, Nutrition, Obesity and Diabetes (KNOD)
Program Officer
Mckeon, Catherine T
Project Start
2011-09-05
Project End
2016-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
3
Fiscal Year
2013
Total Cost
$578,939
Indirect Cost
$139,483
Name
University of North Carolina Chapel Hill
Department
Genetics
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Teslovich, Tanya M; Kim, Daniel Seung; Yin, Xianyong et al. (2018) Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Hum Mol Genet 27:1664-1674
Orozco, Luz D; Farrell, Colin; Hale, Christopher et al. (2018) Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 27:1830-1846
Pan, David Z; Garske, Kristina M; Alvarez, Marcus et al. (2018) Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat Commun 9:1512
Latva-Rasku, Aino; Honka, Miikka-Juhani; Stan?áková, Alena et al. (2018) A Partial Loss-of-Function Variant in AKT2 Is Associated With Reduced Insulin-Mediated Glucose Uptake in Multiple Insulin-Sensitive Tissues: A Genotype-Based Callback Positron Emission Tomography Study. Diabetes 67:334-342
Roman, Tamara S; Mohlke, Karen L (2018) Functional genomics and assays of regulatory activity detect mechanisms at loci for lipid traits and coronary artery disease. Curr Opin Genet Dev 50:52-59
Turcot, Valérie (see original citation for additional authors) (2018) Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 50:26-41
Varshney, Arushi; Scott, Laura J; Welch, Ryan P et al. (2017) Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114:2301-2306
Marouli, Eirini (see original citation for additional authors) (2017) Rare and low-frequency coding variants alter human adult height. Nature 542:186-190
Flannick, Jason (see original citation for additional authors) (2017) Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci Data 4:170179
Graff, Mariaelisa (see original citation for additional authors) (2017) Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet 13:e1006528

Showing the most recent 10 out of 62 publications