Rather than a mere storage site for triglycerides, it is now understood that adipose tissue (fat) and its cellular units, adipocytes, serve as an endocrine organ that responds to extracellular stimuli. Adiponectin, a multimeric protein secreted by adipocytes, is one of the most abundantly secreted proteins in the body and plays a major role in insulin sensitivity, intermediary metabolism, and vascular inflammation. Recent studies have uncovered that adipose tissue has machinery for acutely secreting adiponectin into the bloodstream;yet without adequate approaches for sensitive detection of adiponectin in small volumes, there is limited understanding of adiponectin secretion dynamics and the response to pharmacological treatments. In particular, there is a clear need for more specific and simple-to-use adiponectin assays. The long-term goal of this research is to understand the molecular mechanisms of acute adiponectin secretion to help uncover its relation to insulin resistance, obesity, and metabolic disease states. The objective of this proposal is to determine the dynamics of acute adiponectin secretion and the effects of commonly used lipid-lowering drugs on these dynamics. To fill this gap in knowledge, homogeneous, sensitive assays (pFRET) will be developed for quantitation of adiponectin multimers from only a few microliters of sample. The simplified readout of the pFRET assays will be combined with microfluidic sampling of primary adipocytes to minimize dilution and measure secretion dynamics at high temporal resolution. The studies will not only eliminate a critical barrier to progress in adipocyt research, but will also address important, unresolved questions on acute adiponectin secretion.
Aim 1 of the proposal seeks to develop homogeneous protein assays (pFRET), which are proven for insulin and thrombin detection, for direct fluorescence detection of adiponectin multimers.
Aim 2 seeks to determine the dynamics of acute adiponectin secretion, where it is hypothesized that acute (<10 min) adiponectin secretion originates from a reserve pool of vesicles and is not dependent on ER-to-Golgi vesicle trafficking. Microfluidic secretion sampling, combined with the small-volume pFRET, will help interrogate acute secretion.
In Aim 3, the PI will investigate the effects of a commonly-used lipid-lowering drug on acute adiponectin secretion, testing the hypothesis that statins increase acutely (<10 min) secreted adiponectin multimers. This proposal is significant because it will overcome a critical barrier to progress in understanding acute adiponectin secretion by filling gaps in the current methodology. The proposal is innovative based on the development and integration of two novel bioanalytical approaches, proximity assays and passive microfluidic sampling, for investigating recently discovered acute adiponectin secretion events that are not accessible without this technology. Preliminary evidence strongly supports the feasibility of these proposals. These findings could better inform the timing of drug administration to the many patients currently taking lipid lowerin drugs and permit future work on uncovering molecular and physiological mechanisms of acute adipokine secretion.

Public Health Relevance

Nearly two-thirds of the US population is considered overweight or obese by current criteria, and with diabetes incidence on the rise, lipid-lowering drugs are now widely used to treat hyperlipidemia and related effects. Emerging evidence shows that many of these drugs modulate the synthesis and secretion of adipose-tissue secreted proteins (adipokines), which can have significant effects on insulin resistance;yet there is limited understanding of adipokine secretion dynamics and how insulin resistance is affected by these pharmacological treatments. This project is relevant to the mission of the NIDDK due to its direct relevance to the biochemistry and pharmacology of diabetes, obesity, and nutrition-related disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK093810-03
Application #
8668053
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Haft, Carol R
Project Start
2012-06-08
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
3
Fiscal Year
2014
Total Cost
$321,900
Indirect Cost
$104,400
Name
Auburn University at Auburn
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066470972
City
Auburn University
State
AL
Country
United States
Zip Code
36849
Somasundaram, Subramaniam; Holtan, Mark D; Easley, Christopher J (2018) Understanding Signal and Background in a Thermally Resolved, Single-Branched DNA Assay Using Square Wave Voltammetry. Anal Chem 90:3584-3591
Li, Xiangpeng; Easley, Christopher J (2018) Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal Bioanal Chem 410:791-800
Negou, Jean T; Hu, Juan; Li, Xiangpeng et al. (2018) Advancement of analytical modes in a multichannel, microfluidic droplet-based sample chopper employing phase-locked detection. Anal Methods 10:3436-3443
Li, Xiangpeng; Hu, Juan; Easley, Christopher J (2018) Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. Lab Chip 18:2926-2935
Hu, Juan; Easley, Christopher J (2017) Homogeneous Assays of Second Messenger Signaling and Hormone Secretion Using Thermofluorimetric Methods That Minimize Calibration Burden. Anal Chem 89:8517-8523
Brooks, Jessica C; Judd, Robert L; Easley, Christopher J (2017) Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems. Methods Mol Biol 1566:185-201
Li, Xiangpeng; Brooks, Jessica C; Hu, Juan et al. (2017) 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling. Lab Chip 17:341-349
Negou, Jean T; Avila, L Adriana; Li, Xiangpeng et al. (2017) Automated Microfluidic Droplet-Based Sample Chopper for Detection of Small Fluorescence Differences Using Lock-In Analysis. Anal Chem 89:6153-6159
Kerscher, Petra; Turnbull, Irene C; Hodge, Alexander J et al. (2016) Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues. Biomaterials 83:383-95
Brooks, Jessica C; Ford, Katarena I; Holder, Dylan H et al. (2016) Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue. Analyst 141:5714-5721

Showing the most recent 10 out of 19 publications