This proposal focuses on understanding how the major physiological changes occurring during the first postnatal month regulate the sharp changes in expression of key phenotypic ? cell genes and drive functional maturation of ? cells. Surprisingly little is known about the later stages of ? cell maturation. This has assumed practical importance because in vitro human ES-derived cells insulin-producing cells lack the glucose-responsive insulin secretion that is characteristic of a functional ? cell. Neonatal rodent islets also lack this glucose responsiveness and so serve as a model for the induction of the maturation process. Across the first postnatal month as the glucose-stimulated insulin secretion gradually develops, we found multiple patterns of islet gene expression, most with striking inflection points between P7 and 9 days and again about P15. While we have shown that adenoviral-mediated expression of MafA induced glucose- stimulated insulin secretion (GSIS) almost to adult levels, the developmental enhancement of MafA and other necessary genes must be regulated by physiological stimuli. The dynamic neonatal environment that is very different from that of the adult provides the landscape of these changes: at P1 blood glucose levels are low, as are levels of thyroid hormones (T3 and T4), of corticosterone (the main glucocorticoid of the rat) and of prolactin, and the diet is only milk. Serum T4 levels start changing around P7 and peak at P13 while leptin surges also about P8;there are surges of corticosterone and prolactin around P15 The timing of these hormonal surges suggests that they are the physiological regulators needed for neonatal ? cells to become functional. To address this question we have three specific aims.
Specific aim 1. To determine the mechanisms for thyroid hormone enhancement of ? cell maturation. We show preliminary data that T3 induces glucose responsive insulin secretion and that is mediated by the transcription factor MafA. We propose experiments to dissect the mechanism of T3's regulation of MafA and other genes induced for functional maturation.
Specific aim 2. To determine the importance of the candidate factors T3, leptin, corticosterone and prolactin on ? cell maturation. The environment of the neonate is very different than that of the adult and dynamic. We hypothesize that various physiological factors regulate the maturation of the ? cell and are particularly attracted to three hormonal candidates, in addition to thyroid hormone, that may play key roles: plasma leptin concentrations surge at about the P7 inflection point, while corticosterone and prolactin concentrations are gradually increasing until a surge at about P15, the second key inflection point.
Specific aim 3. To determine if the physiological factors that are effective in maturing the neonatal rat B cell will similarly direct in vitro functional maturation of the immature human pancreatic progenitors. In this translational aim our goal is to transfer to fetal human pancreatic cells the knowledge of the physiological signals for in vivo maturation gained in the first two aims.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK093909-04
Application #
8704273
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
2011-09-20
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Joslin Diabetes Center
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215
Aguayo-Mazzucato, Cristina; Bonner-Weir, Susan (2018) Pancreatic ? Cell Regeneration as a Possible Therapy for Diabetes. Cell Metab 27:57-67
Aguayo-Mazzucato, Cristina; Lee Jr, Terence B; Matzko, Michelle et al. (2018) T3 Induces Both Markers of Maturation and Aging in Pancreatic ?-Cells. Diabetes 67:1322-1331
Aguayo-Mazzucato, Cristina; van Haaren, Mark; Mruk, Magdalena et al. (2017) ? Cell Aging Markers Have Heterogeneous Distribution and Are Induced by Insulin Resistance. Cell Metab 25:898-910.e5
Ebrahimi, Aref; Jung, Min-Ho; Dreyfuss, Jonathan M et al. (2017) Evidence of stress in ? cells obtained with laser capture microdissection from pancreases of brain dead donors. Islets 9:19-29
Weir, Gordon C; Bonner-Weir, Susan (2017) Glucose Driven Changes in Beta Cell Identity Are Important for Function and Possibly Autoimmune Vulnerability during the Progression of Type 1 Diabetes. Front Genet 8:2
Bonner-Weir, Susan; Aguayo-Mazzucato, Cristina (2016) Physiology: Pancreatic ?-cell heterogeneity revisited. Nature 535:365-6
Vegas, Arturo J; Veiseh, Omid; Doloff, Joshua C et al. (2016) Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol 34:345-52
Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian et al. (2016) Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice. Diabetologia 59:522-32
Bonner-Weir, Susan; Aguayo-Mazzucato, Cristina; Weir, Gordon C (2016) Dynamic development of the pancreas from birth to adulthood. Ups J Med Sci 121:155-8
Yamada, Takatsugu; Cavelti-Weder, Claudia; Caballero, Francisco et al. (2015) Reprogramming Mouse Cells With a Pancreatic Duct Phenotype to Insulin-Producing ?-Like Cells. Endocrinology 156:2029-38

Showing the most recent 10 out of 25 publications