Mitochondriaarecentersofmetabolismwhoseactivitiesneedtobecalibratedtomeetchangingcellularneeds. Generaldysfunctionoftheseorganellesisimplicatedinmanycommonhumandisorders,includingParkinson?s, Alzheimer?s, various cancers, metabolic syndrome, type 2 diabetes (T2D), obesity, non-alcoholic fatty liver disease(NAFLD),andheartfailure,mostoftenthroughunclearmeans.Definingthepathogenicmitochondrial alterationsthatcontributetothesemetabolicdisordersanddevisingnewtherapeuticstrategiestorectifythem representprincipalchallengesinmitochondrialmedicine.Apotentialcontributortothisdysfunctionisaberrant intra-mitochondrial protein phosphorylation?a process recognized as critical for pyruvate dehydrogenase regulationformorethan50years,butrelativelyunexploredotherwise.Recenteffortsfromourlaboratoriesand others have now revealed that mitochondrial proteins are replete with dynamic phosphorylation that changes reproduciblybetweenhealthyanddiseasedstates,andthatphosphorylationcanaltertheactivitiesofproteins involved in core metabolic pathways. We have also now connected select phosphorylation events to poorly characterized matrix protein phosphatases, thereby beginning to establish a mechanistic framework for understanding mitochondrial protein phosphorylation and its effects on metabolic activities. Given these emerging findings, the premise of this project is that reversible phosphorylation may be widely important in calibrating mitochondrial metabolism, and that its mismanagement could contribute to the pathophysiology of mitochondria-relateddisorders.Rigorousneweffortstorevealhowphosphorylationaffectsmitochondrialprotein functionandtodefinethephosphatasesthattargeteachsitemayultimatelyenableanewtherapeuticstrategy focusedonmanipulationofthemitochondrialphosphorylationnetwork.Theworkproposedhereisdesignedto take significant steps toward these goals. In particular, the contributions of our efforts will be 1) to define the physiologicalfunctionsanddirectbiochemicalsubstratesofPptc7,apoorlycharacterizedmitochondrialmatrix phosphatasewhosedisruptioncausesaseverefattyacidoxidation(FAO)-likedisorderandneonataldeath,2) toestablishthemechanisticeffectsofphosphorylationonputativePptc7substratesofoutstandingimportance to FAO and protein import, and 3) to begin systematically connecting the full set of orphan mitochondrial phosphatasestocandidatesubstratesandmetabolicprocesses,therebyopeningupalargelyuntappedareaof mitochondrialmetabolicregulation.Altogether,throughacomprehensiveapproachthatcombinesmammalian physiology, omics-level analyses, and rigorous biochemistry, we aim to make definitive connections between mitochondrialphosphatasesandtheirsubstrates,establishabroadframeworkforunderstandingtheroleofthis post-translation modification in calibrating mitochondrial activities, and ultimately pave the way for a new therapeuticstrategytorectifymitochondrialdysfunction.
Mitochondrial dysfunction is implicated in a wide range of rare and common human diseases, yet the underlying features of this dysfunction are often poorly defined and extremely difficult to rectify. This proposal aims to elucidate the role of reversible phosphorylation in regulating mitochondrial proteins in healthy and disease states, and to functionalize the phosphatases that manage this modification. Completion of these goals will help establish cellular signaling proteins as potential therapeutic targets for the treatment of mitochondrialdysfunction.
Showing the most recent 10 out of 20 publications