The iron transporter ferroportin is critical for delivering iron into plasma from duodenal enterocytes absorbing dietary iron, macrophages recycling old red blood cells, and hepatocytes storing iron. The interaction of ferroportin with its ligand, the hepatic hormone hepcidin, is the key event in systemic iron homeostasis. After it binds hepcidin, ferroportin is degraded, thereby limiting iron entry into plasma. Dysregulation of the hepcidin- ferroportin axis underlies most common iron disorders, including anemia of inflammation, anemia of chronic kidney disease, anemia of cancer, hereditary hemochromatosis and iron-loading anemias. Ferroportin is the only known cellular iron exporter in vertebrates and is conserved down to invertebrates and plants. Despite its obvious biological importance, very little is known about the ferroportin structure and the mechanisms by which ferroportin transports iron. In a recent breakthrough, we identified the prokaryotic ortholog of Fpn and obtained its structure by X-ray crystallography. We are now poised to make rapid progress toward complete understanding of the structural basis of Fpn function by combining X-ray crystallography of mammalian Fpn with detailed structure-guided mutational and functional analyses of metal transport and hepcidin-ferroportin interaction in mammalian cells and Xenopus oocytes.
Our Specific Aims are:
Aim 1. Determine the structure of ferroportin by X-ray crystallography. While these efforts are ongoing, we will use the structure of prokaryotic Fpn ortholog to guide further studies of the transport mechanism, specific function of conserved residues, and as a framework for functional and mutagenesis work on the higher orthologs.
Aim 2. Determine the mechanism of iron transport by ferroportin. These studies will determine the driving forces, ion coupling, and calcium gating of Fpn-mediated iron transport.
Aim 3. Discover the structural determinants of ferroportin function and malfunction. We will use structure- and human disease guided mutagenesis to probe critical residues involved in iron binding and translocation, transporter gating, pH dependence, oligomerization, and hepcidin binding. Successful completion of the proposed studies is of fundamental importance for iron biology. Its significance also extends to general biology: identifying the structure of a new class of membrane transporters and defining the mechanism of iron transport will impact studies of other metal and ion transporters. Finally, understanding Fpn iron-transporting function and its regulation by hepcidin is biomedically significant. The proposed studies will generate much more definitive mechanistic and structural insights which will guide the development of improved small and large molecule therapeutics for iron-restrictive anemias and iron overload disorders.

Public Health Relevance

Ferroportin, an iron transporter, plays a critical role in iron homeostasis and development of iron disorders. We propose to define the structure of ferroportin and its mechanism of iron transport. Understanding the ferroportin structure-function could help develop better treatments for iron disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK107309-01
Application #
8988202
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Roy, Cindy
Project Start
2015-07-01
Project End
2020-04-30
Budget Start
2015-07-01
Budget End
2016-04-30
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Hanudel, Mark R; Rappaport, Maxime; Chua, Kristine et al. (2018) Levels of the erythropoietin-responsive hormone erythroferrone in mice and humans with chronic kidney disease. Haematologica 103:e141-e142
Deshpande, Chandrika N; Ruwe, T Alex; Shawki, Ali et al. (2018) Calcium is an essential cofactor for metal efflux by the ferroportin transporter family. Nat Commun 9:3075
Aschemeyer, Sharraya; Qiao, Bo; Stefanova, Deborah et al. (2018) Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 131:899-910
Casu, Carla; Nemeth, Elizabeta; Rivella, Stefano (2018) Hepcidin agonists as therapeutic tools. Blood 131:1790-1794
Stefanova, Deborah; Raychev, Antoan; Deville, Jaime et al. (2018) Hepcidin Protects against Lethal Escherichia coli Sepsis in Mice Inoculated with Isolates from Septic Patients. Infect Immun 86:
Ogura, Jiro; Babu, Ellappan; Miyauchi, Seiji et al. (2018) Identification of a novel Na+-coupled Fe3+-citrate transport system, distinct from mammalian INDY, for uptake of citrate in mammalian cells. Sci Rep 8:2519
Stefanova, Deborah; Raychev, Antoan; Arezes, Joao et al. (2017) Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood 130:245-257
Lovelace, Michael D; Powter, Elizabeth E; Coleman, Paul R et al. (2017) The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Mol Biol Cell 28:1066-1078
Clinkenbeard, Erica L; Hanudel, Mark R; Stayrook, Keith R et al. (2017) Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica 102:e427-e430
Hanudel, Mark R; Rappaport, Maxime; Gabayan, Victoria et al. (2017) Increased serum hepcidin contributes to the anemia of chronic kidney disease in a murine model. Haematologica 102:e85-e88

Showing the most recent 10 out of 26 publications