The investigators will develop a new device for the precise and convenient measurement of eye movements. The device is based on the existing and widely used wired scleral search coil technique, in which an annular contact lens with a small coil of wire is placed on the eye, and its orientation determined from the magnitude of the current induced in the coil by external magnetic fields. The new device uses a similar scleral contact lens on the eye, but the new lens has no wires leading from the eye coil to the associated electronics. Signals are induced in the eye coil, and detected from the eye coil, by a transmitter/receiver near the eye. The orientation of the lens and coil is determined from the received signal. An existing prototype system is the basis for further development of the new system, which will proceed along the following lines: 1) assessment of engineering design options with the existing system; 2) fabrication of new contact lenses with the appropriate coils embedded; 3) extension of the system to measure torsional eye movements as well as horizontal and vertical; 4) packaging as a stand-alone system that can be worn by the subject; 5) assessment of performance by video analysis of eye and lens motion. This new method retains the conventional wired coil's benefits of high resolution and accuracy, large range of movement, and complete three-dimensional measurement of orientation. The largest drawback of the conventional system is the wires that lead from the eye coils to the signal processing electronics. By eliminating these wires, several very significant advantages result. Subject comfort is greatly increased, as the external wiring leading from the eye often irritates the eyelid and causes annoying stimulation of the eyelashes. A greater range of experiments can be performed, since the placement of the head within the external magnetic fields becomes less restrictive; head-free experiments, such as those involving locomotion and self-generated movements become much more practical. Perhaps most importantly, breakage of the external wiring (the most common source of failure in current systems) is avoided. The """"""""wireless"""""""" measurement system will be of tremendous benefit to both the research and the clinical communities. In particular, vestibular and oculomotor patients should tolerate the new coils much better than existing ones, allowing easier and more convenient recording of precise eye movements in a larger segment of this population, for whom the conventional coils are often intimidating and uncomfortable.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB001914-03
Application #
6929951
Study Section
Special Emphasis Panel (ZRG1-VISA (10))
Program Officer
Mclaughlin, Alan Charles
Project Start
2003-09-30
Project End
2008-07-31
Budget Start
2005-08-01
Budget End
2006-07-31
Support Year
3
Fiscal Year
2005
Total Cost
$198,025
Indirect Cost
Name
Johns Hopkins University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Schubert, Michael C; Della Santina, Charles C; Shelhamer, Mark (2008) Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp Brain Res 191:435-46
Karmali, Faisal; Shelhamer, Mark (2005) Automatic detection of camera translation in eye video recordings using multiple methods. Ann N Y Acad Sci 1039:470-6