The objective of this proposal is to develop a practical flat-panel x-ray imaging detector with programmable gain in order to address the increasing demand for wide dynamic range flat panel detectors in advanced x-ray imaging applications. The proposed detector employs three major components: a structured cesium iodide (CsI) scintillator to convert x-rays to optical photons;an avalanche amorphous selenium (a-Se) photoconductor, HARP (High-gain Avalanche Rushing amorphous Photoconductor), to convert the optical image to charge and provide a programmable gain;and a large area active matrix (AM) thin film transistor (TFT) array to read out the image electronically in real-time. The proposed detector has been named SHARP-AMFPI (Scintillator-HARP Active Matrix Flat-Panel Imager). It is capable of producing x-ray quantum noise limited images at the lowest dose expected for x-ray imaging (0.1 In the proposed work we will develop the next generation x-ray flat-panel detectors for low dose imaging. It will increase the efficiency of x-ray detection in fluoroscopy by up to 5 times while maintaining the capability for dual mode fluoroscopy/radiography operation by virtue of programmable gain.Public Health Relevance
Showing the most recent 10 out of 26 publications