Nanotechniques involve the creation, characterization, and modification of organized nanomaterials to serve as building blocks for the construction of large-scale devices and systems. Living systems contain a wide variety of nanomachines and highly ordered structures, including motors, arrays, pumps, membrane cores, and valves. The novelty and ingenious design of bacterial virus phi29 DNA packaging motor, the strongest biomotor studied to date, have inspired the synthesis of this motor and its components as biomemitics for nanodevices. This 30 nm nanomotor uses six ATP-binding pRNA molecules to gear the motor. An imitative motor has been successfully constructed using purified recombinant proteins and artificially synthesized RNA. It can be turned on and off at will. The formation of ordered structural arrays of the motor complex and its components, the retention of motor function after 3'-end extension of the pRNA, and the ease with which pRNA dimers and trimers can be manipulated combine to make the RNA-containing motor a viable option as mechanical parts in nanotechnology. The long-term objective is to utilize this synthesized motor, together with arrays of its components, as parts in nanodevices, with several major applications: 1) To use this artificial motor as parts for nanodevices, such as apparatuses for in vivo drug delivery. 2) To use the ordered arrays of motor components as building facades for large-scale supramolecular structures to serve as molecular sieves, chips for the diagnosis of diseases, or as ultrahigh density data storage systems. The presence of six pRNA subunits in the hexameric building blocks will allow for the construction of arrays with multiple functions, for example to allow for the separate identification of multiple pathogens. 3) To develop this nanomotor into a DNA-sequencing apparatus, since the DNA-packaging process involves movement of the DNA through a 3.6-nm pore surrounded by six RNA that can be modified to accept chemical signals. Though all of these long-term applications are becoming more and more realizable, practical nanotechnology is still in its infancy. It would be unrealistic to propose applying the phi29 motor system directly to nanodevices in only three or four years. Thus, the short-term objective of this proposal is to construct pRNA or protein arrays that will serve as templates for the construction of patterned supramolecular structures, and to find the best routes through which to link nanotubes and nanogolds as well as to attach biological moieties and chemical groups to the motor or the constructed arrays, pRNA dimers, trimers and hexamers will be used for array construction. Chief among early concerns will be avoiding disruption of the assembly and functioning of the motor and/or arrays due to the incorporation of foreign components. This phase of the study will pave the way toward direct and practical technological applications of the motor and its arrays in nanodevices.
Showing the most recent 10 out of 71 publications