The ability to make quantitative, high throughput molecular measurements of biological systems is a critical need for many areas of biomedical research. This Bioengineering Research Partnership (BRP) aims to develop a powerful new analytical platform for high throughput screening and selection based on Raman Flow Cytometry. This Partnership will develop new analytical instrumentation, optically encoded polymer resins for chemical synthesis and screening, and nanostructured materials with unique optically properties for sensitive reporting and encoding. The new technology will perform Raman spectroscopy on single particles in flow to enable new applications in sensitive multiplexed detection, drug discovery, and diagnostics. The Raman Flow Cytometry instrumentation, and applications will be developed by a Partnership involving engineers, biologists, and chemists from academia, government and industry. In the first year of the Partnership, we will modify a commercial particle sorter to detect individual Raman vibrational bands from single particles and sort these particles based on their optical signature. In Years 2-5, we will develop the ability to collect and analyze complete Raman spectra from single particles. In parallel, the Partnership will develop new encoding and reporting strategies for multiplexed molecular analysis and separation. This Raman Flow Cytometry technology will be applied to the development of therapeutics and diagnostics for bacterial pathogens and their toxins. Raman Flow Cytometry will be an important and general new analytical and separation capability that will impact many areas of basic and applied biomedical research in addition to the applications proposed here. ? ?
Fitzgerald, J E; Fenniri, H (2016) Biomimetic Cross-Reactive Sensor Arrays: Prospects in Biodiagnostics. RSC Adv 6:80468-80484 |
Stoner, Samuel A; Duggan, Erika; Condello, Danilo et al. (2016) High sensitivity flow cytometry of membrane vesicles. Cytometry A 89:196-206 |
Mulligan, Sean K; Speir, Jeffrey A; Razinkov, Ivan et al. (2015) Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles. Microsc Microanal 21:1017-1025 |
Nolan, John P (2014) Knowing the code. Cytometry A 85:10-1 |
Zhu, Shaobin; Ma, Ling; Wang, Shuo et al. (2014) Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8:10998-1006 |
Nolan, John P; Duggan, Erika; Condello, Danilo (2014) Optimization of SERS tag intensity, binding footprint, and emittance. Bioconjug Chem 25:1233-42 |
Nolan, John P; Condello, Danilo; Duggan, Erika et al. (2013) Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 83:253-64 |
Nolan, John P; Stoner, Samuel A (2013) A trigger channel threshold artifact in nanoparticle analysis. Cytometry A 83:301-5 |
Nolan, John P; Condello, Danilo (2013) Spectral flow cytometry. Curr Protoc Cytom Chapter 1:Unit1.27 |
Orjuela-Sanchez, Pamela; Duggan, Erika; Nolan, John et al. (2012) A lactate dehydrogenase ELISA-based assay for the in vitro determination of Plasmodium berghei sensitivity to anti-malarial drugs. Malar J 11:366 |
Showing the most recent 10 out of 43 publications