Public Health Relevance

Oxidative stress due to the production of reactive oxygen species is central to the cause of a variety of diseases such as cancer, neurological disorders, and rheumatological disease. It is particularly important in heart disease secondary to diabetes mellitus, a condition that is more pronounced in women than in men. Currently, we are unable to measure reactive oxygen species noninvasively within an organ such as the heart. In this grant we will develop such a method using positron emission tomography in an animal model of diabetic heart disease. The availability of this method should greatly improve our ability to understand and treat various and favorably impact human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB012284-01
Application #
7979686
Study Section
Clinical Molecular Imaging and Probe Development (CMIP)
Program Officer
Sastre, Antonio
Project Start
2010-07-01
Project End
2014-03-31
Budget Start
2010-07-01
Budget End
2011-03-31
Support Year
1
Fiscal Year
2010
Total Cost
$560,651
Indirect Cost
Name
Washington University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Devanathan, Sriram; Whitehead, Timothy D; Fettig, Nicole et al. (2016) Sexual dimorphism in myocardial acylcarnitine and triglyceride metabolism. Biol Sex Differ 7:25
Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G et al. (2014) An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: functional, metabolic, and differential network analysis. PLoS One 9:e101900
Chu, Wenhua; Chepetan, Andre; Zhou, Dong et al. (2014) Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem 12:4421-31
Devanathan, Sriram; Nemanich, Samuel T; Kovacs, Attila et al. (2013) Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism. PLoS One 8:e78477
Robert J, Gropler (2013) Cardiovascular PET/MR: Potential Role and Challenges. Curr Cardiovasc Imaging Rep 6:
Gropler, Robert J; Beanlands, Rob S B; Dilsizian, Vasken et al. (2010) Imaging myocardial metabolic remodeling. J Nucl Med 51 Suppl 1:88S-101S