Stochasticity plays an important role in many biological processes. Examples include bistable genetic switches, noise enhanced robustness of oscillations, and uctuation enhanced sensitivity or """"""""stochastic focusing"""""""". Numerous cellular systems, including development, morphogenesis, polarization and chemotaxis rely on spatial stochastic noise for robust performance. At the same time, stochastic simulations are complex and consume large amounts of computer time. They may require the researcher to be procient in the use of one or more complex software packages. Learning to use existing simulation tools and to integrate them with other software takes considerable time. In many cases, the tools do not exist and require the expertise of mathematicians and computer scientists to develop them. Often, researchers must purchase and maintain clusters of computers to perform the large-scale computations. All of this adds costs and delays to the research process. Currently, there exists no software package that allows researchers to easily build a stochastic model of a biological system, and scale it up to increasing levels of detail and complexity. We propose to build an environment where the modeler can focus his/her attention on the biology;alleviating the burden of software installation and versions, mathematical algorithms, code optimizations, computer systems, etc. This environment will run on laptops and computer workstations (for small problems), extending on demand to high-performance compute clusters, grids, and public or private clouds;thus creating a cost-eective and energy-ecient solution for simulations of all sizes. We will equip this environment with state of the art software for key classes of problems, and make it easy for software developers to integrate new and improved algorithms without the need to develop their own software infrastructure. We will develop new algorithms and software to address key computational capabilities that have not previously been attainable: (1) fully- adaptive, hybrid solvers for sti (and nonsti) well-mixed systems (2) ecient computation of probabilities of rare events, and (3) simulation of spatial stochastic systems at speeds that are several orders of magnitude faster than previous methods. The availability of such a community resource will enable and accelerate progress in both biology and algorithm development.

Public Health Relevance

Relevance Computer modeling and simulation provide critical insights necessary for the understanding of fundamental cellular systems: researchers postulate a mathematical model incorporating the relationships between key components, simulate it on a computer, and then compare the results to experiment to determine whether the model is plausible. Such an understanding, or model, of a biochemical process is important for drug targeting and therapeutic intervention. Stochasticity (randomness) plays an important role in many biological processes. Such simulations are complex and consume large amounts of computer time. We propose to build a comprehensive, state of the art software system for simulating stochastic models. The availability of such a community resource will enable and accelerate progress in biology and medicine.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB014877-01
Application #
8272232
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Peng, Grace
Project Start
2012-05-15
Project End
2015-04-30
Budget Start
2012-05-15
Budget End
2013-04-30
Support Year
1
Fiscal Year
2012
Total Cost
$597,706
Indirect Cost
$164,471
Name
University of California Santa Barbara
Department
Biostatistics & Other Math Sci
Type
Schools of Engineering
DUNS #
094878394
City
Santa Barbara
State
CA
Country
United States
Zip Code
93106
Hellander, Stefan; Hellander, Andreas; Petzold, Linda (2017) Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning. J Chem Phys 147:234101
Hellander, Stefan; Petzold, Linda (2017) Reaction rates for reaction-diffusion kinetics on unstructured meshes. J Chem Phys 146:064101
Kaucka, Marketa; Zikmund, Tomas; Tesarova, Marketa et al. (2017) Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife 6:
Meinecke, Lina (2017) Multiscale Modeling of Diffusion in a Crowded Environment. Bull Math Biol 79:2672-2695
Golkaram, Mahdi; Jang, Jiwon; Hellander, Stefan et al. (2017) The Role of Chromatin Density in Cell Population Heterogeneity during Stem Cell Differentiation. Sci Rep 7:13307
Golkaram, Mahdi; Hellander, Stefan; Drawert, Brian et al. (2016) Macromolecular Crowding Regulates the Gene Expression Profile by Limiting Diffusion. PLoS Comput Biol 12:e1005122
Meinecke, Lina; Lötstedt, Per (2016) Stochastic diffusion processes on Cartesian meshes. J Comput Appl Math 294:1-11
Drawert, Brian; Trogdon, Michael; Toor, Salman et al. (2016) MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME. SIAM J Sci Comput 38:C179-C202
Blanc, Emilie; Engblom, Stefan; Hellander, Andreas et al. (2016) MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME. Multiscale Model Simul 14:668-707
Drawert, Brian; Hellander, Andreas; Bales, Ben et al. (2016) Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist. PLoS Comput Biol 12:e1005220

Showing the most recent 10 out of 33 publications