Development of image-guided drug delivery systems for real-time monitoring, quantifying and validating the delivery and therapeutic action is very important for both research and clinical applications. Various multifunctional nanoparticles of different materials have been investigated over the last decade as prospective imaging and therapeutic platforms; however, effective strategies to quantitatively evaluate delivery of therapeutic payloads to tumors and metastatic cancer cells in vivo are challenging due to low efficiency in specific cancer targeting and non-specific trapping in vital organs such as, liver an lungs. Our goal is to adopt an innovative RNA nanotechnology approach to construct ultrastable multifunctional RNA Beacons and RNA Dendrimers as image-guided agents for quantitative real-time assessment of tumor and metastatic cancer targeted therapeutic delivery, distribution, uptake and response. We have shown that our RNA nanoparticles are non-toxic, non-immunogenic and capable of penetrating across heterogeneous biological barriers to deliver high doses of therapeutics specifically to solid tumors and metastatic cells in mice with little accumulation in normal organs. This provides an ideal platform for non-invasive imaging of cancer therapeutics in vivo. Our multifunctional RNA nanoparticles will be designed to harbor: (1) imaging modules: NIR fluorophores for in vivo fluorescence imaging; radionuclides for PET/SPECT imaging; and gadolinium contrast agents for MRI; (2) targeting modules: such as RNA aptamers or chemical ligands for binding to cancer specific cell surface receptors resulting in internalization of RNA nanoparticles into cancer cells; and (3) therapeutic modules: siRNAs and anti-miRNA to silence the expression of oncogenic genes. The multifunctional RNA constructs will then be evaluated in our well established colon cancer animal models. We will employ multimodal imaging techniques (NIRF, PET/SPECT and/or MRI) for monitoring the therapeutic delivery process in real-time at various spatial and temporal resolution scales. This approach is based on the consideration that each of the three imaging modalities has advantages, and an integrated approach will lead to synergistic benefits with regards to image-guided therapy.

Public Health Relevance

RNA nanoparticles derived from the phi29 pRNA three-way junction (3WJ) are ultrastable and efficiently target tumor and metastatic cells in mice with littl accumulation in normal organs and tissues after systemic injection. This proposal is to construct multifunctional RNA Beacons and RNA Dendrimers as image-guided agents using the pRNA-3WJ scaffold for monitoring the in vivo delivery of cancer therapeutics in real-time and consequences of therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
7R01EB019036-03
Application #
9208386
Study Section
Special Emphasis Panel ()
Program Officer
Tucker, Jessica
Project Start
2014-07-01
Project End
2018-06-30
Budget Start
2016-03-22
Budget End
2016-06-30
Support Year
3
Fiscal Year
2015
Total Cost
$292,719
Indirect Cost
$99,110
Name
Ohio State University
Department
Other Health Professions
Type
Schools of Pharmacy
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Piao, Xijun; Wang, Hongzhi; Binzel, Daniel W et al. (2018) Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2'-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 24:67-76
Jasinski, Daniel L; Yin, Hongran; Li, Zhefeng et al. (2018) Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles. Hum Gene Ther 29:77-86
Shu, Yi; Yin, Hongran; Rajabi, Mehdi et al. (2018) RNA-based micelles: A novel platform for paclitaxel loading and delivery. J Control Release 276:17-29
Xu, Congcong; Haque, Farzin; Jasinski, Daniel L et al. (2018) Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett 414:57-70
Jasinski, Daniel L; Li, Hui; Guo, Peixuan (2018) The Effect of Size and Shape of RNA Nanoparticles on Biodistribution. Mol Ther 26:784-792
Guo, Sijin; Piao, Xijun; Li, Hui et al. (2018) Methods for construction and characterization of simple or special multifunctional RNA nanoparticles based on the 3WJ of phi29 DNA packaging motor. Methods 143:121-133
Haque, Farzin; Pi, Fengmei; Zhao, Zhengyi et al. (2018) RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications. Wiley Interdiscip Rev RNA 9:
Haque, Farzin; Xu, Congcong; Jasinski, Daniel L et al. (2017) Using Planar Phi29 pRNA Three-Way Junction to Control Size and Shape of RNA Nanoparticles for Biodistribution Profiling in Mice. Methods Mol Biol 1632:359-380
Zhang, Yijuan; Leonard, Marissa; Shu, Yi et al. (2017) Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing Using Multifunctional pRNA Nanoparticles. ACS Nano 11:335-346
Guo, Sijin; Li, Hui; Ma, Mengshi et al. (2017) Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles. Mol Ther Nucleic Acids 9:399-408

Showing the most recent 10 out of 27 publications