Radiotracers containing [18F]-labeled electron-rich aromatic rings are among the most highly sought-after PET imaging agents. For example, the development of a clinical synthesis of 6-[18F]fluoro- L-DOPA has been a challenging and high-profile target in the PET community for more than 20 years. Despite the great importance of [18F]-labeled electron rich arenes, there are very few radiosynthesis methods for accessing these structures. The grant builds on an existing collaboration between the physical sciences (Chemistry, Sanford) and life sciences (Radiology/Medical Imaging, Scott) at the University of Michigan, bringing their collective expertise to bear on this problem. The overall objective of the proposed research is to address this critical need by developing nucleophilic radiofluorination methods that (a) enable radiochemists to 18F-label electron rich aromatic rings starting from readily available, stable precursor molecules and (b) can be automated, validated, and translated to radiochemistry manufacturing facilities for use by non-chemists to synthesize clinical radiotracer doses. The central hypothesis of this application is that copper mediated radiofluorination methods will uniquely enable this team to achieve these objectives. The proposed research will develop Cu-mediated methods for radiolabeling (mesityl)(aryl)iodonium salts (Aims 1 and 2) as well as aryl iodides, aryl boronic acids and aryl stannanes (Aim 3) with 18F?. The work is significant because it entails development of novel methods for the synthesis of previously inaccessible (or difficult to access) 18F-labeled PET radiotracers of clinical interest: 4-[18F]fluoro-m-hydroxyphenethylguanidine ([18F]4F-MHPG; cardiac regional nerve density), 6-[18F]fluoro-L-DOPA ([18F]F-DOPA; dopaminergic pathway), [18F]2'-methoxyphenyl- (N-2'-pyridinyl)-p-fluoro-benzamidoethylpiperazine ([18F]MPPF; 5-HT1A receptor), (4- [18F]fluorophenyl)triphenylphosphonium chloride ([18F]BFPET; mitochondrial voltage sensor), [18F]octreotide ([18F]TOC; somatostatin 2 receptors in, for example, neuroendocrine tumors); pre-clinical interest: new radiotracers for the GAT-1 GABA transporter and dopamine D3 receptor, and targets of interest to the pharmaceutical industry (BACE, orexin receptors). These goals will be accomplished through a variety of innovations including: (a) the development of novel copper-mediated methods for the nucleophilic radiofluorination of electron rich arenes (including new methods for the generation and utilization of Ag18F), (b) the mechanistically-driven optimization of these new radiofluorination reactions and (c) translation of these methods to clinically validated radiosyntheses (automated synthesis of cGMP-compliant clinical doses). Overall, this project will deliver four novel Cu-mediated methods for synthesizing 18F-labeled radiotracers and validated clinical synthesis of numerous important radiotracers. Both of these deliverables will expand the utility of PET imaging for the detection, treatment, and prevention of disease.

Public Health Relevance

Positron emission tomography (PET) imaging is a non-invasive molecular imaging technique that allows real-time in vivo monitoring of physiological processes via administration of a radiotracer (a bioactive molecule tagged with a positron emitting radioisotope) to a patient. Currently, PET imaging finds application in drug discovery, disease diagnosis and monitoring, and personalized medicine. Approximately 1.5 million PET scans are conducted annually, and there is significant room for further growth. However, the impact of PET cannot be fully realized without both new synthetic methods for the assembly of radiotracers as well as the translation of these synthesis methods to routine clinical production. The overall objectives of the proposed research are to develop nucleophilic radiofluorination methods that (a) enable radiochemists to 18F-label electron rich aromatic rings starting from readily available, stable precursor molecules and (b) can be automated, validated, and translated to radiochemistry manufacturing facilities for use by non-chemists to synthesize clinical radiotracer doses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB021155-04
Application #
9702823
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Atanasijevic, Tatjana
Project Start
2016-09-01
Project End
2020-05-31
Budget Start
2019-06-01
Budget End
2020-05-31
Support Year
4
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Makaravage, Katarina J; Shao, Xia; Brooks, Allen F et al. (2018) Copper(II)-Mediated [11C]Cyanation of Arylboronic Acids and Arylstannanes. Org Lett 20:1530-1533
Mossine, Andrew V; Brooks, Allen F; Bernard-Gauthier, Vadim et al. (2018) Automated synthesis of PET radiotracers by copper-mediated 18 F-fluorination of organoborons: Importance of the order of addition and competing protodeborylation. J Labelled Comp Radiopharm 61:228-236
McCammant, Matthew S; Thompson, Stephen; Brooks, Allen F et al. (2017) Cu-Mediated C-H 18F-Fluorination of Electron-Rich (Hetero)arenes. Org Lett 19:3939-3942
Mossine, Andrew V; Brooks, Allen F; Ichiishi, Naoko et al. (2017) Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination. Sci Rep 7:233
Makaravage, Katarina J; Brooks, Allen F; Mossine, Andrew V et al. (2016) Copper-Mediated Radiofluorination of Arylstannanes with [(18)F]KF. Org Lett :