1,3-Butadiene (BD) is a petrochemical diene used extensively in the manufacture of synthetic rubber and plastics. In 1996, the Occupational Safety and Health Administration (OSHA) reduced the 8-hr time-weighted average workroom standard for BD from 1000 ppm to 1 ppm because human and animal exposure to BD has been associated with development of cancer. Key target tissues, in both humans and animals, include bone marrow, lung, heart, and liver. Mice, which were much more sensitive to BD-induced carcinogenicity than rats, exhibited sex and tissue differences in susceptibility. However, the biochemical basis for BD- induced carcinogenicity remains unclear. We have previously characterized BD oxidation to yield mutagenic metabolites, butadiene monoxide and diepoxybutane, in mouse, rat, and human liver. The results provided evidence for significant species differences in hepatic BD bioactivation and indicated major roles for P450 2E1 and 2A6 in BD oxidation in human liver. However, the sex- related differences in BD bioactivation in mouse, rat, and human tissues have not been investigated. Also, BD bioactivation in other target tissues (heart, lung, and bone marrow) remains unclear. Recently, we have obtained preliminary data indicating a major role for P450 4B1 in BD oxidation in male and female mouse lung and male mouse kidney. Thus, current experimental objectives are: A) To investigate sex-related differences in BD bioactivation in target (lung, heart, bone marrow, and liver) and non-target (kidney) tissues of both mice and rats, investigate the roles of P450s 2A, 2E, and 4B in BD bioactivation in these tissues, and characterize BD bioactivation in male and female human lung and liver. B) To characterize the specific DNA adducts of butadiene monoxide and diepoxybutane that are formed in vivo in various mouse and rat tissues, and investigate their potential role in species, sex, and tissue differences in susceptibility. C) To develop biomonitoring methods to assess exposure of mice and rats to BD, using GC/MS, LC/MS, and postlabeling techniques. These methods will be based upon characterization of covalent adducts of butadiene monoxide with hemoglobin and determinations of concentrations of modified, excised DNA bases in urine. The proposed studies will allow for a better understanding of the mechanisms of BD carcinogenicity and may facilitate and improve human epidemiologic studies. This may lead to a more accurate assessment of human risk.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES006841-12
Application #
6342566
Study Section
Special Emphasis Panel (ZRG4-ALTX-1 (01))
Program Officer
Thompson, Claudia L
Project Start
1999-01-01
Project End
2003-12-31
Budget Start
2001-01-16
Budget End
2001-12-31
Support Year
12
Fiscal Year
2001
Total Cost
$195,454
Indirect Cost
Name
University of Wisconsin Madison
Department
Biology
Type
Schools of Veterinary Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Zeng, Fang-Mao; Liu, Ling-Yan; Zheng, Jin et al. (2016) Identification of a Fused-Ring 2'-Deoxyadenosine Adduct Formed in Human Cells Incubated with 1-Chloro-3-buten-2-one, a Potential Reactive Metabolite of 1,3-Butadiene. Chem Res Toxicol 29:1041-50
Liu, Xin-Jie; Zeng, Fang-Mao; An, Jing et al. (2013) Cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene and 1-chloro-3-buten-2-one, two alternative metabolites of 1,3-butadiene. Toxicol Appl Pharmacol 271:13-9
Sun, Liang; Pelah, Avishay; Zhang, Dong-Ping et al. (2013) Formation of fused-ring 2'-deoxycytidine adducts from 1-chloro-3-buten-2-one, an in vitro 1,3-butadiene metabolite, under in vitro physiological conditions. Chem Res Toxicol 26:1545-53
Elfarra, Adnan A; Zhang, Xin-Yu (2012) Alcohol dehydrogenase- and rat liver cytosol-dependent bioactivation of 1-chloro-2-hydroxy-3-butene to 1-chloro-3-buten-2-one, a bifunctional alkylating agent. Chem Res Toxicol 25:2600-7
Barshteyn, Nella; Krause, Renee J; Elfarra, Adnan A (2007) Mass spectral analyses of hemoglobin adducts formed after in vitro exposure of erythrocytes to hydroxymethylvinyl ketone. Chem Biol Interact 166:176-81
Zhang, Xin-Yu; Elfarra, Adnan A (2006) Characterization of 1,2,3,4-diepoxybutane-2'-deoxyguanosine cross-linking products formed at physiological and nonphysiological conditions. Chem Res Toxicol 19:547-55
Zhang, Xin-Yu; Elfarra, Adnan A (2005) Reaction of 1,2,3,4-diepoxybutane with 2'-deoxyguanosine: initial products and their stabilities and decomposition patterns under physiological conditions. Chem Res Toxicol 18:1316-23
Sprague, Christopher L; Elfarra, Adnan A (2005) Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-l-cysteine. Toxicol Appl Pharmacol 207:266-74
Zhang, Xin-Yu; Elfarra, Adnan A (2004) Characterization of the reaction products of 2'-deoxyguanosine and 1,2,3,4-diepoxybutane after acid hydrolysis: formation of novel guanine and pyrimidine adducts. Chem Res Toxicol 17:521-8
Sprague, Christopher L; Phillips, Lynette A; Young, Karen M et al. (2004) Species and tissue differences in the toxicity of 3-butene-1,2-diol in male Sprague-Dawley rats and B6C3F1 mice. Toxicol Sci 80:3-13

Showing the most recent 10 out of 29 publications