Adverse human health effects due to occupational and environmental exposure to nanomaterials are a major concern and a potential threat to their successful commercialization and biomedical applications. Realization of their commercial potential will require a better understanding of the interactions of nanomaterials with biological systems and the development of new strategies to manage human health risk. Toxicological screening is urgently needed to identify potentially hazardous nanomaterials;however their wide variability and unique properties complicate interpretation of traditional in vitro and in vivo toxicity assays. An interdisciplinary research team at Brown University including a materials scientist, a toxicologic pathologist, and a molecular biologist has developed a panel of novel nanomaterials and innovative approaches for nanotoxicology assays. This panel of model nanomaterials will be expanded to include selected commercial materials subjected to rigorous characterization of toxicologically relevant materials propertied. The goal of this competitive revision is to identify the specific structural and surface properties of carbon nanotubes responsible for the genotoxicity and potential carcinogenicity following inhalation. Novel imaging techniques at the light microscopic and ultrastructural levels will be used to study the interaction of fibrous nanomaterials with dividing cells.

Public Health Relevance

This research will lead to rational material design strategies for manufacturing of carbon nanotubes with minimal adverse human health impact.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
3R01ES016178-03S1
Application #
7814469
Study Section
Special Emphasis Panel (ZES1-SET-V (03))
Program Officer
Nadadur, Srikanth
Project Start
2009-09-17
Project End
2012-05-31
Budget Start
2009-09-17
Budget End
2012-05-31
Support Year
3
Fiscal Year
2009
Total Cost
$270,363
Indirect Cost
Name
Brown University
Department
Pathology
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Creighton, Megan A; Rangel-Mendez, J Rene; Huang, Jiaxing et al. (2013) Graphene-Induced Adsorptive and Optical Artifacts During In Vitro Toxicology Assays. Small 9:1921-1927
Chen, Yantao; Guo, Fei; Jachak, Ashish et al. (2012) Aerosol synthesis of cargo-filled graphene nanosacks. Nano Lett 12:1996-2002
Sanchez, Vanesa C; Jachak, Ashish; Hurt, Robert H et al. (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15-34
Liu, Xinyuan; Sen, Sujat; Liu, Jingyu et al. (2011) Antioxidant deactivation on graphenic nanocarbon surfaces. Small 7:2775-85
Broaddus, V Courtney; Everitt, Jeffrey I; Black, Brad et al. (2011) Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B Crit Rev 14:153-78
Pietruska, Jodie R; Liu, Xinyuan; Smith, Ashley et al. (2011) Bioavailability, intracellular mobilization of nickel, and HIF-1? activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci 124:138-48
Sanchez, Vanesa C; Weston, Paula; Yan, Aihui et al. (2011) A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol 8:17
Shi, Xinghua; von dem Bussche, Annette; Hurt, Robert H et al. (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714-9
Sanchez, Vanesa C; Pietruska, Jodie R; Miselis, Nathan R et al. (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:511-29