There is a well-documented association between cardiovascular disease morbidity and mortality and increased levels of ambient fine particulate air pollution (PM2.5). Stroke is a common manifestation of cardiovascular disease and a leading cause of death, hospitalization, and long-term disability in the United States. PM2.5 may also increase the risk of ischemic and/or hemorrhagic stroke, but few studies have specifically addressed this hypothesis and results remain equivocal. Other important gaps in this literature include: identification of especially susceptible individuals;evaluation of the effects of PM2.5 component species, gaseous pollutants (CO, NO2, SO2, and ozone) and specific air pollution sources;and delineation of the time scale of effects. We propose to evaluate in unprecedented detail the association between exposure to individual ambient pollutants and pollutant mixtures and the risk of stroke among 159,643 post-menopausal women participating in the Women's Health Initiative and 45,358 men participating in the Health Professionals Follow-Up Study. Specifically, using data from these two national, prospective cohorts we will: (1) evaluate the effects of long- term (i.e.: years) and short-term (i.e.: days) exposure to ambient pollutants on the risk of ischemic and hemorrhagic stroke, (2) assess whether participants with diabetes mellitus and other stroke risk factors are especially susceptible to these effects, (3) examine whether the strength of association varies by ischemic stroke subtypes, and (4) evaluate these associations within a novel multi-pollutant framework. To accomplish these aims we will estimate each participant's exposure to PM2.5, PM2.5 component species, gaseous pollutants, and pollutant mixtures using validated state-of-the-art geostatistical models, and relate each individual's exposure to the risk of ischemic and hemorrhagic stroke. This proposal offers several advantages over existing studies, including two well characterized study populations, detailed data on each stroke event, large sample size, geographic diversity, the ability to examine short-term and long-term effects jointly, novel statistical methods to reduce measurement error, and the opportunity to assess multiple pollutants simultaneously within a novel multi-pollutant framework. By better quantifying the relationship between ambient air pollutants and pollution mixtures and specific stroke types, and by identifying susceptible populations, the results of this project will contribute to regulatory policy with important implications for stroke prevention, and may help to inform the planning of future mechanistic studies.

Public Health Relevance

Stroke is a leading cause of death, hospitalization, and disability in the United States. Studies suggest that exposure to outdoor air pollution may increase the risk of stroke, but this hypothesis has not been evaluated in detail. We propose to use novel methods and approaches to evaluate this hypothesis in detail within the context of two large, national studies including 161,000 post-menopausal women and 51,000 men. The results of this project will likely have important implications for stroke prevention through futur changes in public health policy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES020871-03
Application #
8650891
Study Section
Cardiovascular and Sleep Epidemiology (CASE)
Program Officer
Dilworth, Caroline H
Project Start
2012-07-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
3
Fiscal Year
2014
Total Cost
$531,406
Indirect Cost
$65,993
Name
Brown University
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Vivanco-Hidalgo, Rosa Maria; Wellenius, Gregory A; BasagaƱa, Xavier et al. (2018) Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. Environ Res 162:160-165
Peters, Junenette L; Zevitas, Christopher D; Redline, Susan et al. (2018) Aviation Noise and Cardiovascular Health in the United States: a Review of the Evidence and Recommendations for Research Direction. Curr Epidemiol Rep 5:140-152
Kulick, Erin R; Wellenius, Gregory A; Boehme, Amelia K et al. (2018) Residential Proximity to Major Roadways and Risk of Incident Ischemic Stroke in NOMAS (The Northern Manhattan Study). Stroke 49:835-841
Honda, Trenton; Eliot, Melissa N; Eaton, Charles B et al. (2017) Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women. Environ Int 105:79-85
Weaver, Anne M; Wellenius, Gregory A; Wu, Wen-Chih et al. (2017) Residential distance to major roadways and cardiac structure in African Americans: cross-sectional results from the Jackson Heart Study. Environ Health 16:21
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D et al. (2017) A novel principal component analysis for spatially misaligned multivariate air pollution data. J R Stat Soc Ser C Appl Stat 66:3-28
Kulick, Erin R; Wellenius, Gregory A; Kaufman, Joel D et al. (2017) Long-Term Exposure to Ambient Air Pollution and Subclinical Cerebrovascular Disease in NOMAS (the Northern Manhattan Study). Stroke 48:1966-1968
Keller, Joshua P; Chang, Howard H; Strickland, Matthew J et al. (2017) Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures. Epidemiology 28:338-345
Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon et al. (2017) Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health. Am J Epidemiol 186:1281-1289
Weuve, Jennifer; Kaufman, Joel D; Szpiro, Adam A et al. (2016) Exposure to Traffic-Related Air Pollution in Relation to Progression in Physical Disability among Older Adults. Environ Health Perspect 124:1000-8

Showing the most recent 10 out of 26 publications