The aryl hydrocarbon receptor (AHR) modulates the host-microbiome metabolic axis. There are strong links between the gut microbiota and the development and/or exacerbation of nonalcoholic fatty liver disease (NAFLD), all of which are modulated by activation or repression of the AHR. A mechanistic connection between AHR activation, changes in gut microbiota composition/function, and NAFLD development has not been established. Further, the concept that environmental pollutant-mediated disruption and/or modulation of the AHR-gut microbiota metabolic axis leads to the development of NAFLD has not been addressed. Our published4-7 and preliminary data with 2,3,7,8-tetrachlorodibenzofuran (TCDF) indicates AHR activation profoundly alters the gut microbiota in a qualitative and quantitative manner, increases hepatic lipogenesis, significantly alters hepatic ceramide synthesis through direct AHR activity (a proposed driver of NAFLD), and increases systemic inflammation. These results have led to the novel central hypothesis: Dietary exposure to potent environmental AHR ligands leads to functionally significant changes in the gut microbiota that exacerbate NAFLD in a time- and Ahr-dependent manner. Through the innovative use of cutting-edge techniques (16S rRNA gene sequencing, metagenomics and metabolomics) and unique mouse models (tissue specific knockouts of Ahr, gnotobiotic mice, and fecal transfer experiments), we plan to identify the functional changes imparted to the gut microbiota following dietary exposure to potent AHR ligands such as TCDF and to evaluate the AHR-dependent role of ceramides in driving NAFLD pathogenesis and progression. This combination of approaches will allow us to accurately assess bacterial community dynamics and its interaction with and impact on the host, and whether these changes result in increased susceptibility to NAFLD. We are particularly interested in how the timing (weaning, adulthood) of the exposure influences disease outcome. This study will provide new insight into the effects of exposure on a number of environmentally relevant persistent AHR ligands, such as 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) and co-planar PCBs (PCB-126) and provide valuable endpoints for future studies in human populations.

Public Health Relevance

This study will provide invaluable insight into the effects of exposure on a number of environmentally relevant persistent AHR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF) and co-planar PCBs and provide valuable endpoints for future studies examining mixtures such as Aroclor 1254. We are particularly interested in how the timing (weaning, adulthood) of the exposure influences disease outcome such as development of liver (e.g., fatty liver) and metabolic disorders (e.g., obesity).

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES028288-04
Application #
9982685
Study Section
Systemic Injury by Environmental Exposure (SIEE)
Program Officer
Dzierlenga, Anika Lin
Project Start
2017-09-01
Project End
2022-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Pennsylvania State University
Department
Veterinary Sciences
Type
Earth Sciences/Resources
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802
Maan, Meenu; Peters, Jeffrey M; Dutta, Mainak et al. (2018) Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun 504:582-589
Cai, Jingwei; Nichols, Robert G; Koo, Imhoi et al. (2018) Multiplatform Physiologic and Metabolic Phenotyping Reveals Microbial Toxicity. mSystems 3: