The long term objective is to study the chemistry of the prosthetic group of visual pigments. For, although the spectroscopy of retinal, N-retinylidene n-butylamine (NRBA) and related polyenes has been examined in some detail, knowledge of the relationship between the chemistry and spectroscopy is not clearly understood. In order to correctly deduce the chemical role of the prosthetic group within the environment of the pigment protein, the chemistry of the prosthetic group in chemically defined experimental systems must first be probed. In this work, the hydrogen bonding (H-bond) and proton transferring reactions of CH3(CH=CH)5C=NC4H9 (compound I) and NRBA are to be studied both qualitatively and quantitatively. Some of the experimental variables to be studied are: i) donor reagents such as phenol, substituted phenols, acetic acid and chloro substituted acetic acids, ii) selected solvents such as hydrocarbons and chlorohydrocarbons, and iii) changing temperature. It was learned in prior studies that, in hydrocarbon solvents, when I is treated with a weak acid such as phenol, and when the temperature is progressively lowered, three separate spectra sequentially appear. These spectra belong to respectively: compound I, H-bonded I, and proton transferred I. This entire process can be placed in the formal framework of acid-base equilibria studies. The degree of conversion from one species to another will be obtained from changes in absorbance that will be used to find equilibrium constants. The resulting values will be used to determine the temperature dependent thermodynamic constants deltaH, deltaS. Compound I and NRBA undergo proton transfer with certain weak acids, and these reactions will be examined quantitatively in the same manner. The obtained thermodynamic constants for both reaction steps and the three excitation energies will link the three species together in a relative energy state diagram. From these results, it will be possible to measure the relative stability contributed to each ground and excited state by the selected donors and solvents.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY007587-02
Application #
3264621
Study Section
Biophysics and Biophysical Chemistry A Study Section (BBCA)
Project Start
1988-05-01
Project End
1991-04-30
Budget Start
1989-05-01
Budget End
1990-04-30
Support Year
2
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of Missouri Kansas City
Department
Type
Overall Medical
DUNS #
800772162
City
Kansas City
State
MO
Country
United States
Zip Code
64110