The founding neural cell type in the developing retina is specified by the expression of a basic Helix-Loop Helix (bHLH) transcription factor called Atonal in the fly and Atonal homolog 5 (Ath5) in vertebrates (1-11). In the fly the founder cells later differentiate as R8 photoreceptors (12) and in vertebrates they become retinal ganglion cells (RGCs, 13). In both taxa this involves an initial rising and widespread expression of Atonal followed by its clearance from all cells except the future R8/RGC (2, 14-17). The accurate execution of this patterned selection process is crucial for normal retinal histogenesis (18). In the fly this process takes place in a moving wave called the morphogenetic furrow (12, 19-21). Here we focus on the role of the Ras/MAPK pathway in this event. MAPKs (Mitogen Activated/ Microtubule Associate Protein Kinase) are the final cytoplasmic element in the Ras signal transduction cascade (22-25). MAPKs are activated by dual phosphorylation in the cytoplasm and then phosphorylate both cytoplasmic and nuclear targets including transcription factors (26, 27). Nuclear translocation is thought to be regulated by this phosphorylation, and to rapidly follow it (in minutes, 28, 29, 30). However, in the morphogenetic furrow of the developing Drosophila eye phosphorylated MAPK antigen is held in the cytoplasm for hours (31). In the last funding period we developed a reagent to detect nuclear MAPK non-antigenically and have used this reagent to show that MAPK nuclear translocation is regulated by a second mechanism that is independent of phosphorylation. We also show that if this cytoplasmic hold is overcome, Atonal expression is disrupted and the founder cells differentiate precociously as neurons. Consequentially developmental patterning in the retina is disrupted. Preliminary data suggests that MAPK cytoplasmic hold is mediated by the sequestration of a critical nuclear transport factor: Dim7 (32, 33). We now propose four specific aims: 1) Tests for MAPK cytoplasmic hold at other times in development. 2) Define the amino-acid residues in MAPK which mediate hold. 3) Test hypotheses for the function of Dim7 in MAPK cytoplasmic hold. 4) Determine which developmental signals control Dim7 sequestration. Our long-term objective is a deep understanding of retinal histogenesis leading to possible intervention for the induction of regeneration in patients with retinal degeneration or damage.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY012537-08
Application #
7112260
Study Section
Special Emphasis Panel (ZRG1-CDF-3 (02))
Program Officer
Mariani, Andrew P
Project Start
1999-05-03
Project End
2008-07-31
Budget Start
2006-08-01
Budget End
2008-07-31
Support Year
8
Fiscal Year
2006
Total Cost
$371,070
Indirect Cost
Name
Emory University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Jones, Chonnettia; Reifegerste, Rita; Moses, Kevin (2006) Characterization of Drosophila mini-me, a gene required for cell proliferation and survival. Genetics 173:793-808
Vrailas, Alysia D; Moses, Kevin (2006) Smoothened, thickveins and the genetic control of cell cycle and cell fate in the developing Drosophila eye. Mech Dev 123:151-65
Marenda, Daniel R; Vrailas, Alysia D; Rodrigues, Aloma B et al. (2006) MAP kinase subcellular localization controls both pattern and proliferation in the developing Drosophila wing. Development 133:43-51
Vrailas, Alysia D; Marenda, Daniel R; Cook, Summer E et al. (2006) smoothened and thickveins regulate Moleskin/Importin 7-mediated MAP kinase signaling in the developing Drosophila eye. Development 133:1485-94
Rodrigues, Aloma B; Werner, Erica; Moses, Kevin (2005) Genetic and biochemical analysis of the role of Egfr in the morphogenetic furrow of the developing Drosophila eye. Development 132:4697-707
Jones, Chonnettia; Moses, Kevin (2004) Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin Cell Dev Biol 15:75-81
Kumar, Justin P; Hsiung, Frank; Powers, Maureen A et al. (2003) Nuclear translocation of activated MAP kinase is developmentally regulated in the developing Drosophila eye. Development 130:3703-14
Hsiung, Frank; Moses, Kevin (2002) Retinal development in Drosophila: specifying the first neuron. Hum Mol Genet 11:1207-14
Kumar, J P; Moses, K (2001) The EGF receptor and notch signaling pathways control the initiation of the morphogenetic furrow during Drosophila eye development. Development 128:2689-97
Kumar, J P; Wilkie, G S; Tekotte, H et al. (2001) Perturbing nuclear transport in Drosophila eye imaginal discs causes specific cell adhesion and axon guidance defects. Dev Biol 240:315-25

Showing the most recent 10 out of 13 publications